• 제목/요약/키워드: Infinite series identities

검색결과 18건 처리시간 0.026초

IDENTITIES ABOUT LEVEL 2 EISENSTEIN SERIES

  • Xu, Ce
    • 대한수학회논문집
    • /
    • 제35권1호
    • /
    • pp.63-81
    • /
    • 2020
  • In this paper we consider certain classes of generalized level 2 Eisenstein series by simple differential calculations of trigonometric functions. In particular, we give four new transformation formulas for some level 2 Eisenstein series. We can find that these level 2 Eisenstein series are reducible to infinite series involving hyperbolic functions. Moreover, some interesting new examples are given.

ON THE INFINITE PRODUCTS DERIVED FROM THETA SERIES I

  • Kim, Dae-Yeoul;Koo, Ja-Kyung
    • 대한수학회지
    • /
    • 제44권1호
    • /
    • pp.55-107
    • /
    • 2007
  • Let k be an imaginary quadratic field, h the complex upper half plane, and let $\tau{\in}h{\cap}k,\;q=e^{{\pi}i\tau}$. In this article, we obtain algebraic numbers from the 130 identities of Rogers-Ramanujan continued fractions investigated in [28] and [29] by using Berndt's idea ([3]). Using this, we get special transcendental numbers. For example, $\frac{q^{1/8}}{1}+\frac{-q}{1+q}+\frac{-q^2}{1+q^2}+\cdots$ ([1]) is transcendental.

SOME EVALUATIONS OF INFINITE SERIES INVOLVING DIRICHLET TYPE PARAMETRIC HARMONIC NUMBERS

  • Hongyuan Rui;Ce Xu;Xiaobin Yin
    • 대한수학회보
    • /
    • 제61권3호
    • /
    • pp.671-697
    • /
    • 2024
  • In this paper, we formally introduce the notion of a general parametric digamma function Ψ(−s; A, a) and we find the Laurent expansion of Ψ(−s; A, a) at the integers and poles. Considering the contour integrations involving Ψ(−s; A, a), we present some new identities for infinite series involving Dirichlet type parametric harmonic numbers by using the method of residue computation. Then applying these formulas obtained, we establish some explicit relations of parametric linear Euler sums and some special functions (e.g. trigonometric functions, digamma functions, Hurwitz zeta functions etc.). Moreover, some illustrative special cases as well as immediate consequences of the main results are also considered.

IDENTITIES AND RELATIONS ON THE q-APOSTOL TYPE FROBENIUS-EULER NUMBERS AND POLYNOMIALS

  • Kucukoglu, Irem;Simsek, Yilmaz
    • 대한수학회지
    • /
    • 제56권1호
    • /
    • pp.265-284
    • /
    • 2019
  • The main purpose of this paper is to investigate the q-Apostol type Frobenius-Euler numbers and polynomials. By using generating functions for these numbers and polynomials, we derive some alternative summation formulas including powers of consecutive q-integers. By using infinite series representation for q-Apostol type Frobenius-Euler numbers and polynomials including their interpolation functions, we not only give some identities and relations for these numbers and polynomials, but also define generating functions for new numbers and polynomials. Further we give remarks and observations on generating functions for these new numbers and polynomials. By using these generating functions, we derive recurrence relations and finite sums related to these numbers and polynomials. Moreover, by applying higher-order derivative to these generating functions, we derive some new formulas including the Hurwitz-Lerch zeta function, the Apostol-Bernoulli numbers and the Apostol-Euler numbers. Finally, for an application of the generating functions, we derive a multiplication formula, which is very important property in the theories of normalized polynomials and Dedekind type sums.

ON THE INFINITE PRODUCTS DERIVED FROM THETA SERIES II

  • Kim, Dae-Yeoul;Koo, Ja-Kyung
    • 대한수학회지
    • /
    • 제45권5호
    • /
    • pp.1379-1391
    • /
    • 2008
  • Let k be an imaginary quadratic field, ${\eta}$ the complex upper half plane, and let ${\tau}{\in}{\eta}{\cap}k,\;q=e^{{\pi}{i}{\tau}}$. For n, t ${\in}{\mathbb{Z}}^+$ with $1{\leq}t{\leq}n-1$, set n=${\delta}{\cdot}2^{\iota}$(${\delta}$=2, 3, 5, 7, 9, 13, 15) with ${\iota}{\geq}0$ integer. Then we show that $q{\frac}{n}{12}-{\frac}{t}{2}+{\frac}{t^2}{2n}{\prod}_{m=1}^{\infty}(1-q^{nm-t})(1-q^{{nm}-(n-t)})$ are algebraic numbers.

Infinite Families of Congruences for Partition Functions ${\bar{\mathfrak{EO}}}$(n) and ${\mathfrak{EO}}_e$(n)

  • Riyajur Rahman;Nipen Saikia
    • Kyungpook Mathematical Journal
    • /
    • 제63권2호
    • /
    • pp.155-166
    • /
    • 2023
  • In 2018, Andrews introduced the partition functions ${\mathfrak{EO}}$(n) and ${\bar{\mathfrak{EO}}}$(n). The first of these denotes the number of partitions of n in which every even part is less than each odd part, and the second counts the number of partitions enumerated by the first in which only the largest even part appears an odd number of times. In 2021, Pore and Fathima introduced a new partition function ${\mathfrak{EO}}_e$(n) which counts the number of partitions of n which are enumerated by ${\bar{\mathfrak{EO}}}$(n) together with the partitions enumerated by ${\bar{\mathfrak{EO}}}$(n) where all parts are odd and the number of parts is even. They also proved some particular congruences for ${\bar{\mathfrak{EO}}}$(n) and ${\mathfrak{EO}}_e$(n). In this paper, we establish infinitely many families of congruences modulo 2, 4, 5 and 8 for ${\bar{\mathfrak{EO}}}$(n) and modulo 4 for ${\mathfrak{EO}}_e$(n). For example, if p ≥ 5 is a prime with Legendre symbol $({\frac{-3}{p}})=-1$, then for all integers n ≥ 0 and α ≥ 0, we have ${\bar{\mathfrak{EO}}}(8{\cdot}p^{2{\alpha}+1}(pn+j)+{\frac{19{\cdot}p^{2{\alpha}+2}-1}{3}}){\equiv}0$ (mod 8); 1 ≤ j ≤ (p - 1).