• Title/Summary/Keyword: Infiltration Trench

Search Result 44, Processing Time 0.032 seconds

Analysis of Performance and Measurement of Water Contents for Road Substructures with an Infiltration Trench (침투도랑 인접도로 하부구조의 함수비 측정 및 공용성 분석)

  • Kong, Seokjun;Jung, Jongsuk;Yeon, Gyumin;Kim, In Tai
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.29-36
    • /
    • 2017
  • PURPOSES : This study mechanically analyzed the performance of road substructures with focus on infiltration trenches of pavement substructures. METHODS : Water contents and response times for precipitation of pavement substructures were investigated via sensors buried near the infiltration trench to measure water contents. RESULTS : The results of the water contents of pavement systems constructed with an infiltration trench yield levels that were slightly increased by approximately 2% compared to those measured from general pavement systems. This water content difference of 2% resulted in a decrease in service life of less than two years. CONCLUSIONS : Service life reduction due to an infiltration trench is minimal, particularly when the trench is installed with proper caution.

Experimental Study of Runoff Induced by Infiltration Trench (침투 트렌치로 인한 유출 양상의 실험 연구)

  • Lee, Sangho;Cho, Heeho;Lee, Jungmin;Park, Jaehyun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.107-117
    • /
    • 2008
  • Infiltration facilities are effective instruments to mitigate flood and can increase base runoff in urban watersheds. In order to analyze effects of infiltration trenches physical model experiments were conducted. The physical model facility consists of two soil tanks, artificial rainfall generators, tensiometers, and piezometers. The experiment was conducted by nine times and each case differed in rainfall intensity, rainfall duration and the type of ground surface. Measured quantities in the experiments are as follows: surface runoff, subsurface runoff, trench pipe runoff, groundwater level, water content, etc. The following resulted from the model experiment: The volume of subsurface runoff at trench watershed was maximum 78.3% compared with rainfall. This value is bigger than that of ordinary rate of subsurface runoff, and shows a groundwater recharge effect of trench. The time of runoff passing through the trench became earlier and the volume of runoff became larger with the increase of inflow into the trench, while trench exfiltration into ground became relatively smaller. The results of this study presented above show that infiltration trenches are effective instruments to increase base runoff during dry periods.

An estimation method for the maintenance timing of the infiltration trench (침투도랑 시설의 유지관리 시점 산정방법에 관한 연구)

  • Lee, Seung Won;Cha, Sung Min
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • To manage the non-point source pollution and restore the water circulation, many technologies including infiltration or reservoir systems were installed in the urban area. These facilities have many problems regarding maintenance as their operation period becomes lengthier. The purpose of this study was to estimate the optimal maintenance timing through a long-term load test on the infiltration trench as one of the low impact development techniques. An infiltration trench was installed in the demonstration test facility, and stormwater was manufactured by Manual on installation and operation of non-point pollution management facilities from the Ministry of Environment, Korea and entered into the infiltration trench. Particle size distribution (PSD), suspended solids (SS) removal efficiency, and infiltration rate change tests were performed on inflow and outflow water. In case of the PSD, the maximum particulate size in the outflow decreased from 64 ㎛ to 33 ㎛ as the operating duration elapsed. The SS removal efficiency improved from 97 % to 99 %. The infiltration rate changed from 0.113 L/sec to 0.015 L/sec during the operation duration. The maintenance timing was determined based on the stormwater runoff requirements with these changes in water quality and infiltration rate. The methodologies in this study could be used to estimate the timing of maintenance of other low impact development techniques.

An Experimental Study on the Application Method of Infiltration Trench (침투트렌치 적용방안에 관한 실험적 연구)

  • Jung, Do-Joon;Ahn, Seung-Sub;Kim, Yun-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.147-154
    • /
    • 2010
  • In this study, flood control effects for infiltration trench which is one of runoff reduction facilities were analyzed based on hydraulic experiments. Hydraulic experiments were conducted using 25 cm diameter circular pipe, and water depths for boundary conditions are 5, 10, 15, 20, 25 cm. Infiltration volume, runoff volume, runoff initiation time, final infiltration capacity and final infiltration capacity reached time etc. were measured from infiltration trench hydraulic experiment. We assumed that drainage area of each infiltration trench is $130\;m^2$ ($6.5\;m{\times}20\;m$) and calculated CN with area based on those experimental characteristics. In AMC-I condition, the calculated CN with five water depths is 84 for 2% pipe slope, 83 for 5% pipe slope. In AMC-III condition, the calculated CN is 84 for 2% and 5% pipe slope.

Suggestion of the Specific Infiltration Equation for Infiltration Trench Installed in a Granular Ground (조립토 지반에 설치된 침투트렌치의 비침투량 산정식 제안)

  • Nam, Jung-Man;Yun, Jung-Mann;Kim, Do-Hyeong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.4
    • /
    • pp.47-55
    • /
    • 2008
  • The model test and field test for an infiltration trench were carried out to estimate the infiltration quantity in a granular ground with high permeability like Jeju's ground. The specific infiltration equation was suggested on the basis of the model test result. It shows that the infiltration quantity by the proposed equation is larger than about two times of that by the existed equation. Meanwhile, the infiltration quantity from field test is similar to that from the proposed equation as the result of comparison between infiltration quantity of the filed test and that of the proposed equation and the existed equation. Therefore, it may be right that the proposed equation is applied to estimate the infiltration quantity of the infiltration trench in a granular ground with high permeability.

  • PDF

An Analysis of Runoff Reduction Effect of Infiltration Facilities in Urban Area (도시유역에서 침투시설의 우수유출저감효과 분석)

  • Lee, Jae-Joon;Kim, Ho-Nyun;Kwak, Chang-Jae;Lee, Sang-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.628-631
    • /
    • 2007
  • One of the structural measures for the peak flow reduction is infiltration facilities. There are many types in infiltration facilities - infiltration basin, trench, bed, porous pavement, percolated subdrain, dry well. In this study runoff reduction effect of infiltration trench is analyzed by WinSLAMM. Runoff reduction effect is investigated by each design rainfall and temporal pattern of rainfall particularly. The biggest reduction is shown in Yen and Chow's temporal pattern of design rainfall and the smallest reduction is shown in Huff's first quartile pattern. Runoff reduction rate is presented about 6 to 14 percentage, and the larger return period, the smaller runoff reduction rate.

  • PDF

The finite element analysis on structural stability of road with infiltration trench (침투도랑 설치에 따른 도로 구조 안정성의 유한요소 해석)

  • Jung, Jong-Suk;Hyun, Kyoung-Hak;Kim, In-Tae;Song, Jin-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.107-122
    • /
    • 2015
  • The purpose of this study is to analyze the structural stability of pavement due to water infiltration at the road with infiltration trench as using the FEM(finite element analysis). Five cases for FEM is divided considering the amount of rainfall and rain duration time. The results of FEM show that the more rainfall in a short period time is faster the change of moisture content. Also, it is the proportional relationship between and changing area of moisture content of more than 40% due to rainfall. Case 3 and 4 are necessary to check the installation of infiltration trench because of moisture content of more than 40%, recovery time of initial moisture content, and changing area of more than 40%. Case 1,2, and 5 have no a significant effect on road pavement structure due to lower moisture content and shorter duration time of higher moisture content.

Impacts on water-cycle by land use change and effects of infiltration trenches in Asan New town (토지이용 변화가 물순환에 미치는 영향과 침투트렌치 설치 효과 분석 - A 신도시 지구를 중심으로 -)

  • Hyun, Kyoung-Hak;Lee, Jung-Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.691-701
    • /
    • 2010
  • As the water-cycle is transformed by increasing of the impermeable area in process of urbanization, decentralized rainwater management facilities(infiltration, harvesting and retention facilities) as source control are considered to be a method of restoring water-cycle of urban and reducing runoff. SWMM model was used to analyse the change of water-cycle structure before and after development in A new town watershed. Modified SWMM code was developed to apply infiltration facilities. The modified SWMM was used to analyse the change of water-cycle before and after infiltration trench setup in AJ subcatchment. Changes of the impervious area by development and consequent increase in runoff were analyzed. These analyses were performed by a day rainfall during ten years from 1998 to 2007. According to the results, surface runoff increased from 51.85% to 65.25 %, and total infiltration volume decreased from 34.15 % to 21.08 % in A newtown watershed. If more than 80 infiltration trenches are constructed in AJ subcatchment, the low flow and the drought flow increases by around 47%, 44%, separately. The results of this study, infiltration trench is interpreted to be an effective infiltration facility to restore water-cycle in new town.

Analysis of Infiltration Trench Facility for Runoff Reduction Effect (침투트렌치 시설의 유출저감 효과 분석)

  • Yeon, Jong Sang;Jang, Young Su;Shin, Hyun Suk;Kim, Eung Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5813-5819
    • /
    • 2014
  • LID planning and application has been actively developed to reduce the runoff volume at increased impervious areas due to rapid urbanization. In this study, a performance and applicability evaluation was performed in an infiltration trench using the SWMM model, based on the experimental conditions for infiltration trenches. The infiltration trench application area was applied to 5~15% of the drainage area. The SWMM results of discharge and the BOD reduction efficiency were analyzed at a peak discharge of 45.7~61.9%, total discharge of 47.2~62.3%, and BOD load of 52.3~55.3. The discharge and BOD was estimated to be 12~24% higher and 37~38% smaller than the experimental results. This study can help in the application and performance evaluation of infiltration trenches.

Variation of Flow and Filtration Mechanisms in an Infiltration Trench Treating Highway Stormwater Runoff (고속도로 강우유출수 처리를 위한 침투도랑에서 흐름조건에 따른 여과기작 및 효율분석)

  • Guerra, Heidi B.;Yu, Jianghua;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.20 no.1
    • /
    • pp.63-71
    • /
    • 2018
  • The particle filtration mechanisms in an infiltration trench should be varying due to the different hydraulic conditions during stormwater runoff. The understanding of these variations associated with different filtration mechanisms and their effect on the particle removal efficiency is of vital importance. Therefore, a LID (Low Impact Development) system comprising of an infiltration trench packed with gravel and woodchip was investigated during the monitoring of several independent rainfall events. A typical rainfall event was divided into separate regimes and their corresponding flow conditions as well as filtration mechanisms in the trench were analyzed. According to hydraulic conditions, it was found out that filtration changes between vertical and horizontal flows as well as between unsaturated, saturated, and partially-saturated flows. Particle separation efficiency was high (55-76%) and was mainly governed by physical straining during the unsaturated period. It was then enhanced by diffusion during the saturated period (75-95%). When the trench became partially saturated at the end of the rainfall event, the efficiency decreased which was believed to be due to the existence of a negatively charged air-water interface which limited the removal to positively charged particles.