• Title/Summary/Keyword: Infiltration Area Analysis

Search Result 157, Processing Time 0.023 seconds

Long term Rainfall-Runoff Modeling Using Storage Function Method (저류함수를 이용한 일단위 장기유출모의 모형 구축)

  • Sung, Young-Du;Chong, Koo-Yol;Shin, Cheol-Kyun;Park, Jin-Hyeog
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.7
    • /
    • pp.737-746
    • /
    • 2008
  • The purpose of developing a rainfall-runoff and reservoir model is to provide an analysis tool for hydrological engineers in order to forecast discharge of rivers and to accomplish reservoir operations easily and accurately. In this study, based on the short-term rainfall-runoff storage function model which has gained popularity for real time flood forecast in practical water management affairs, a long-term runoff model was developed for the improvement of the calculation method of effective rainfall and percolation at the infiltration area. Annual discharge was simulated for three dam watersheds(Andong, Hapcheon, Milyang) in Nakdong River basin to analyze the accuracy of the developed model and compare it to SSARR model, which is used as the long-term runoff model in current practical water management affairs. As the result of the comparison of hydrographs, SSARR model showed relatively better results. However, it is possible for the developed model to simulate reliable long-term runoff using relatively little available data and is useful for hydrological engineers in practical affairs.

Reduction Rate of the Total Runoff Volume though Installing a Rainfall Storage Tank in the Sub-Surface (지하 빗물저류시설의 설치에 따른 유출 저감 효과 분석)

  • Choi, Gye-Woon;Choi, Jong-Young;Li, Jin-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.455-464
    • /
    • 2003
  • In this paper, the experiments with installing a rainfall storage tank in the sub-surface were conducted and the reduction rates of the total runoff volume were investigated. The analysis were conducted based upon the variations of the rainfall intensity, surface coverage and surface slope. The reduction rate of the runoff volume was varied from 42.3% to 52.9% with the soil in the bank of the Seung Gi stream. In the experiments, the rainfall intensities were varied from 40mm/hr to 100mm/hr and the results indicate that the direct runoff reduction can be obtained with the installation of the rainfall storage tank in the sub-surface. The variation of the stored volume in the tank is very large in the mild slope but very small in the steep slope with over 3% slope. With this results, the reduction of the direct runoff volume for the longtime flood is expected with the installation of the rainfall storage tank in the region haying the steep slope such as the mountain area.

The Effect of Various Methods of Cross-linking in Type I Collagen Scaffold on Cartilage Regeneration (I형 콜라겐지지체의 다양한 가교처리 방법이 연골막성 연골재생에 미치는 영향)

  • Son, Dae Gu;Lim, Joong Jae;Sohn, Kyounghee;Yang, Eun Kyung
    • Archives of Plastic Surgery
    • /
    • v.33 no.6
    • /
    • pp.723-731
    • /
    • 2006
  • Purpose: Collagen is the principal structural biomolecule in cartilage extracellular matrix, which makes it a logical target for cartilage engineering. In this study, porous type I collagen scaffolds were cross-linked using dehydrothermal(DHT) treatment and/or 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide(EDC), in the presence and absence of chondroitin-6-sulfate(CS) for cartilage regeneration. Methods: Cartilage defects were created in the proximal part of the ear of New Zealand rabbits. Four types of scaffolds(n=4) were inserted. The types included DHT cross-linked(Group 1), DHT and EDC cross- linked(Group 2), CS added DHT cross-linked(Group 3), and CS added DHT and EDC cross-linked(Group 4). Histomorphometric analysis and cartilage-specific gene expression of the reconstructed tissues were evaluated respectively 4, 8, and 12 weeks after implantation. Results: The largest quantity of regenerated cartilage was found in DHT cross-linked groups 1 and 3 in the 8th week and then decreased in the 12th week, while calcification increased. Calcification was observed from the 8th week and the area increased in the 12th week. Group 4 was treated with EDC cross-linking and CS, and the matrix did not degrade in the 12th week. Cartilage-specific type II collagen mRNA expression increased with time in all groups. Conclusion: CS did not increase chondrogenesis in all groups. EDC cross-linking may prevent chondrocyte infiltration from the perichondrium into the collagen scaffold.

Chemically-induced delayed cutaneous hypersensitivity in dogs infected with Demodex canis (Demodex canis 감염이 화학적으로 유발된 지연형 피부과민증에 미치는 영향)

  • Lee, Chai-yong;Ham, Hyeon-woo;Lee, Chung-gil;Seo, Kye-won
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.4
    • /
    • pp.843-851
    • /
    • 1995
  • To observe the effect of Demodex canis infection on the cellular immune response and hematological profile, 8 Doberman pinschers experimentally infected with D cains and 4 uninfected control dogs were sensitized with 2, 4-dinitro-chlorobenzene(DNCB) on the skin and were challenged with DNCB 14 days after the initial sensitization to elicit allergic contact dermatitis. Histological and hematological changes of these dogs were then observed. Macroscopic changes of skin challenged with DNCB in D canis-infected dogs included significantly reduced area of allergic reaction(p<0.05) than in uninfected control group. Infiltration of inflammatory cells in the D canis-infected group was also significantly reduced(p<0.05) than in the uninfected control group. These changes indicated that the cell-mediated immune response of the animals was suppressed by the infection with D canis. Total white blood cell count in dogs infected with D canis was increased when dogs were sensitized with DNCB (p<0.01). The result appeared to be caused by stress due to D canis infection, secondary bacterial infection and decreased efficacy of general body defense system. Blood eosionophils were increased in D canis-infected dogs which appreared to be caused by the allergic contact dermatitis. Blood chemistry analysis revealed that total protein and globulin were increased(p<0.05), while albumin level was decreased. This result appeared to be caused by secondary bacterial infection.

  • PDF

Analysis of historical drought in East Asia with CLM and CLM-VIC (CLM 및 CLM-VIC를 이용한 동아시아 지역의 과거 가뭄 분석)

  • Um, Myoung-Jin;Kim, Jeongbin;Kim, Mun Mo;Kim, Yeonjoo
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.134-144
    • /
    • 2018
  • In this study, the historical drought in East Asia was analyzed with the Community Land Model (CLM) and CLM-Variable infiltration capacity (CLM-VIC). The observation dataset, Climate Research Unit (CRU), were also applied to check and estimate the historical drought for 1951 - 2010. The annual precipitation, temperature and evapotranspiration by CRU, CLM and CLM-VIC were investigated before estimating the meteorological drought index, which is the Standardized precipitation evapotranspiration index (SPEI). Three variables by observation and simulations have generally similar spatial pattern in East Asia even though there are some mere differences depending on the local area. These similar patterns are also founded in the results of SPEI by CRU, CLM and CLM-VIC. However, the similarity of SPEI becomes weaker as the drought severity goes severer from D1 to D4.

A Primary Study on the Potential of Floodplain Filtration in Korea (우리나라에서 홍수터여과의 가능성에 대한 기초조사)

  • Choi, Myung-Ho;Kim, Kyeong-Soo;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.70-78
    • /
    • 2009
  • Floodplain areas of major South Korean rivers were determined by analyzing topographical maps and hydraulic properties of floodplain soil were measured using disc tension infiltrometer. To assess the possibility of treating secondary effluents of municipal wastewater with floodplain soil, a computer code for the analysis of unsaturated flow in soil was employed along with searches conducted in the literature. Based on the data generated, an estimate of total floodplain filtration capacity in Korea was obtained. The results of our study reveal that Korean floodplains have surface soil that is adequate for treating water. Moreover, the distributions of floodplains are substantial over the entire reaches of the rivers, indicating that the conditions are favorable for floodplain filtration as additional treatment of secondary effluent. The capacity of floodplain filtration in Korea is circa 182,000,000 $m^3$/day and most of the rivers are estimated to have enough capacity of floodplain filtration to meet all the secondary effluent, indicating that this technology may be expected to make further improvements on river water quality. Furthermore, this method may also be applied to better the source-water quality for drinking water.

Analysis of Water Cycle Effect by Plan of LID-decentralized Rainwater Management Using SWMM-LID Model in a Low-carbon Green Village (SWMM-LID를 이용한 저탄소 녹색마을의 LID-분산형 빗물관리 계획에 따른 물순환 효과 분석)

  • Lee, Jung-Min;Hyun, Kyoung-Hak;Lee, Yun-Sang;Kim, Jung-Gon;Park, Yong-Boo;Choi, Jong-Soo
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.503-507
    • /
    • 2011
  • There was a plan to develop a low-carbon green village(approximately $400,000m^2$) in A city, a new town. Restoration of water cycle is essential for creation of the low-carbon green village. Therefore, installation plan of LID-decentralized rainwater management facilities for natural water cycle was established for creation of the low-carbon green village. Analyses on effect of the water cycle were performed in conditions of before, after developing the low-carbon green village and after installing the LID facilities(rain garden, constructed wetland, rainwater harvesting facility, etc.) using SWMM-LID model developed by EPA. Due to the characteristic of permeable area before development and significant green spaces after development, installation plan of LID facilities to restore the water cycle did not show an obvious effect. However, potential of the hydrological cycle could be seen by the installation of the LID facilities.

Evaluating Paraspinal Back Muscles Using Computed Tomography (CT) and Magnetic Resonance Imaging (MRI): Reliability Analysis and Correlation with Intervertebral Disc Pathology

  • Hwang, Eunjin;Antony, Chermaine Deepa;Choi, Jung-Ah;Kim, Minsu;Khil, Eun Kyoung;Choi, Il
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.2
    • /
    • pp.109-117
    • /
    • 2021
  • Purpose: To investigate the reliability of CT and MRI for quantitative and qualitative analyses of lumbar paraspinal muscle fatty infiltration (PSFI) and correlation of PSFI with intervertebral disc pathology. Materials and Methods: Lumbar spine CT and MRI of 36 subjects were reviewed retrospectively. Two observers independently outlined lumbar paraspinal muscles at each mid-intervertebral disc level. Paraspinal muscles on CT and MRI were graded according to the Goutallier grading system (GGS). The area, mean value, and standard deviation (SD) of the Hounsfield unit (HU) were obtained. Intervertebral discs were assessed on axial image of T2WI at each level. Correlations between qualitative and quantitative data and intervertebral disc pathology, age, and sex were evaluated. Results: Inter- and intra-observer agreements for results of GGS on MRI were substantial (κ = 0.79) and moderate (κ = 0.59), respectively. Inter- and intra-observer agreements for results of GGS on CT were almost perfect (κ = 0.88) and substantial (κ = 0.66), respectively. Quantitative measurements of HU showed almost perfect inter- and intra-observer reliabilities (κ = 0.82 and κ = 0.99, respectively). There were statistically significant correlations between intervertebral disc pathology and PSFI at L1-2, L2-3, and L4-5 levels on MRI and at L1-2 and L3-4 levels on CT. Age showed significant correlation with results of GGS at all levels on CT and MRI. Conclusion: This study showed that GGS results and HU measurements could be useful for evaluating PSFI because they showed correlations with intervertebral disc pathology results at certain levels.

Estimating the Return Flow of Irrigation Water for Paddies Using Hydrology-Hydraulic Modeling (수리·수문해석 모델을 활용한 농업용수 회귀수량 추정)

  • Shin, Ji-Hyeon;Nam, Won-Ho;Yoon, Dong-Hyun;Yang, Mi-Hye;Jung, In-Kyun;Lee, Kwang-Ya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.1-13
    • /
    • 2023
  • Irrigation return flow plays an important role in river flow forecasting, basin water supply planning, and determining irrigation water use. Therefore, accurate calculation of irrigation return flow rate is essential for the rational use and management of water resources. In this study, EPA-SWMM (Environmental Protection Agency-Storm Water Management Model) modeling was used to analyze the irrigation return flow and return flow rate of each intake work using irrigation canal network. As a result of the EPA-SWMM, we tried to estimate the quick return flow and delayed return flow using the water supply, paddy field, drainage, infiltration, precipitation, and evapotranspiration. We selected 9 districts, including pumping stations and weirs, to reflect various characteristics of irrigation water, focusing on the four major rivers (Hangang, Geumgang, Nakdonggang, Yeongsangang, and Seomjingang). We analyzed the irrigation period from May 1, 2021 to September 10, 2021. As a result of estimating the irrigation return flow rate, it varied from approximately 44 to 56%. In the case of the Gokseong Guseong area with the highest return flow rate, it was estimated that the quick return flow was 4,677 103 m3 and the delayed return flow was 1,473 103 m3 , with a quick return flow rate of 42.6% and a delayed return flow rate of 13.4%.

Sensitivity Analysis of the SWMM Model Parameters Based on Design Rainfall Condition (설계강우조건에 따른 SWMM모형 매개변수의 민감도 분석)

  • Lee, Jong-Tae;Hur, Sung-Chul;Kim, Tae-Hwa
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.3 s.152
    • /
    • pp.213-222
    • /
    • 2005
  • This study is a sensitivity analysis of the parameters which affect the simulation results under various design rainfall conditions, using the SWMM model, for three selected basins in urban areas. The sensitivity of the peak flow rate is defined by $S_Q$ (=1.0 - (min. ratio of peak flow rate/max. ratio of peak flow rate)), and the rainfall conditions are classified in terms of design rainfall frequency, duration, and distribution. The simulation results show that in most conditions the parameters - the impermeable area ratio, the sewer slope, and the initial infiltration capacity - have more significant effects on the results than other parameters. As the design rainfall frequency increases, the sensitivity of the sewer slope and sewer roughness increases, while the parameters related with the surface runoff decrease. When the rainfall duration increases, the sensitivities of most parameters of surface runoff and sewer flow decrease. Also, at the 1st quarterly Huff rainfall distribution condition, the impermeable area ratio has high sensitivity, but at the 4th quarterly condition the parameters related with sewer flow show higher sensitivities. These tendencies can be explained by considering the procedure for computing the effective rainfall and kinematic wave on the surface and sewer flow.