• Title/Summary/Keyword: Infill walls

Search Result 133, Processing Time 0.024 seconds

Seismic response of masonry infilled RC frames: practice-oriented models and open issues

  • Lima, Carmine;De Stefano, Gaetano;Martinelli, Enzo
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.409-436
    • /
    • 2014
  • Although it is widely accepted that the interaction -between masonry infill and structural members significantly affects the seismic response of reinforced concrete (RC) frames, this interaction is generally neglected in current design-oriented seismic analyses of structures. Moreover, the role of masonry infill is expected to be even more relevant in the case of existing frames designed only for gravitational loads, as infill walls can significantly modify both lateral strength and stiffness. However, the additional contribution to both strength and stiffness is often coupled to a modification of the global collapse mechanisms possibly resulting in brittle failure modes, generally related to irregular distributions of masonry walls throughout the frame. As a matter of principle, accurate modelling of masonry infill should be at least carried out by adopting nonlinear 2D elements. However, several practice-oriented proposals are currently available for modelling masonry infill through equivalent (nonlinear) strut elements. The present paper firstly outlines some of the well-established models currently available in the scientific literature for modelling infill panels in seismic analyses of RC frames. Then, a parametric analysis is carried out in order to demonstrate the consequences of considering such models in nonlinear static and dynamic analyses of existing RC structures. Two bay-frames with two-, three- and four-storeys are considered for performing nonlinear analyses aimed at investigating some critical aspects of modelling masonry infill and their effects on the structural response. Particularly, sensitivity analyses about specific parameters involved in the definition of the equivalent strut models, such as the constitutive force-displacement law of the panel, are proposed.

Computational evaluation of experimental methodologies of out-of-plane behavior of framed-walls with openings

  • Anic, Filip;Penava, Davorin;Abrahamczyk, Lars;Sarhosis, Vasilis
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.265-277
    • /
    • 2019
  • Framed masonry wall structures represent a typical high-rise structural system that are also seismically vulnerable. During ground motions, they are excited in both in-plane and out-of-plane terms. The interaction between the frame and the infill during ground motion is a highly investigated phenomenon in the field of seismic engineering. This paper presents a numerical investigation of two distinct static out-of-plane loading methods for framed masonry wall models. The first and most common method is uniformly loaded infill. The load is generally induced by the airbag. The other method is similar to in-plane push-over method, involves loading of the frame directly, not the infill. Consequently, different openings with the same areas and various placements were examined. The numerical model is based on calibrated in-plane bare frame models and on calibrated wall models subjected to OoP bending. Both methods produced widely divergent results in terms of load bearing capabilities, failure modes, damage states etc. Summarily, uniform load on the panel causes more damage to the infill than to the frame; openings do influence structures behavior; three hinged arching action is developed; and greater resistance and deformations are obtained in comparison to the frame loading method. Loading the frame causes the infill to bear significantly greater damage than the infill; infill and openings only influence the behavior after reaching the peak load; infill does not influence initial stiffness; models with opening fail at same inter-storey drift ratio as the bare frame model.

Evaluation on Seismic Performance of Existing Frame retrofitted with RC CIP Infill Walls (기존 골조의 내진성능 향상을 위한 철근콘크리트 현장타설 끼움벽의 보강성능 평가)

  • Kim, Sun-Woo;Yun, Hyun-Do;Kim, Yun-Su;Ji, Sang-Kyu
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.53-56
    • /
    • 2008
  • A reinforced concrete (RC) cast-in-place (CIP) infill wall retrofitting method may provide an improved seismic performance and economical efficiency for the non-ductile rahmen structures. In this study, four one story-one bay non-ductile frame were constructed and retrofitted with CIP infill wall to evaluate seismic performance of CIP infill wall-frame. From the test results, infill wall-frame exhibited a marked increase in shear strength compared to non-ductile RC frame specimen. But the ductility and story-drift at maximum load were decreased when shear strength of infill wall larger than that of existing RC frame. Therefore, it is confirmed that adequate reinforcement detail is required to assure sufficient seismic performance.

  • PDF

Developing a modified IDA-based methodology for investigation of influencing factors on seismic collapse risk of steel intermediate moment resisting frames

  • Maddah, Mohammad M.;Eshghi, Sassan
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.367-377
    • /
    • 2020
  • Incremental dynamic analysis (IDA) widely uses for the collapse risk assessment procedures of buildings. In this study, an IDA-based collapse risk assessment methodology is proposed, which employs a novel approach for detecting the near-collapse (NC) limit state. The proposed approach uses the modal pushover analysis results to calculate the maximum inter-story drift ratio of the structure. This value, which is used as the upper-bound limit in the IDA process, depends on the structural characteristics and global seismic responses of the structure. In this paper, steel midrise intermediate moment resisting frames (IMRFs) have selected as case studies, and their collapse risk parameters are evaluated by the suggested methodology. The composite action of a concrete floor slab and steel beams, and the interaction between the infill walls and the frames could change the collapse mechanism of the structure. In this study, the influences of the metal deck floor and autoclaved aerated concrete (AAC) masonry infill walls with uniform distribution are investigated on the seismic collapse risk of the IMRFs using the proposed methodology. The results demonstrate that the suggested modified IDA method can accurately discover the near-collapse limit state. Also, this method leads to much fewer steps and lower calculation costs rather than the current IDA method. Moreover, the results show that the concrete slab and the AAC infill walls can change the collapse parameters of the structure and should be considered in the analytical modeling and the collapse assessment process of the steel mid-rise intermediate moment resisting frames.

Nonlinear seismic performance of code designed perforated steel plate shear walls

  • Barua, Kallol;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.85-98
    • /
    • 2019
  • Nonlinear seismic performances of code designed Perforated Steel Plate Shear Walls (P-SPSW) were studied. Three multi-storey (4-, 8-, and 12-storey) P-SPSWs were designed according to Canadian seismic provisions and their performance was evaluated using time history analysis for ground motions compatible with Vancouver response spectrum. The selected code designed P-SPSWs exhibited excellent seismic performance with high ductility and strength. The current code equation was found to provide a good estimation of the shear strength of the perforated infill plate, especially when the infill plate is yielded. The applicability of the strip model, originally proposed for solid infill plate, was also evaluated for P-SPSW and two different strip models were studied. It was observed that the strip model with strip widths equal to center to center diagonal distance between each perforation line could reasonably predict the inelastic behavior of unstiffened P-SPSWs. The strip model slightly underestimated the initial stiffness; however, the ultimate strength was predicted well. Furthermore, applicability of simple shear-flexure beam model for determination of fundamental periods of P-SPSWs was studied.

Interval finite element analysis of masonry-infilled walls

  • Erdolen, Ayse;Doran, Bilge
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.73-84
    • /
    • 2012
  • This paper strongly addresses to the problem of the mechanical systems in which parameters are uncertain and bounded. Interval calculation is used to find sharp bounds of the structural parameters for infilled frame system modeled with finite element method. Infill walls are generally treated as non-structural elements considerably to improve the lateral stiffness, strength and ductility of the structure together with the frame elements. Because of their complex nature, they are often neglected in the analytical model of building structures. However, in seismic design, ignoring the effect of infill wall in a numerical model does not accurately simulate the physical behavior. In this context, there are still some uncertainties in mechanical and also geometrical properties in the analysis and design procedure of infill walls. Structural uncertainties can be studied with a finite element formulation to determine sharp bounds of the structural parameters such as wall thickness and Young's modulus. In order to accomplish this sharp solution as much as possible, interval finite element approach can be considered, too. The structural parameters can be considered as interval variables by using the interval number, thus the structural stiffness matrix may be divided into the product of two parts which correspond to the interval values and the deterministic value.

An experimental study on strengthening of vulnerable RC frames with RC wing walls

  • Kaltakci, M. Yasar;Yavuz, Gunnur
    • Structural Engineering and Mechanics
    • /
    • v.41 no.6
    • /
    • pp.691-710
    • /
    • 2012
  • One of the most popular and commonly used strengthening techniques to protect against earthquakes is to infill the holes in reinforced concrete (RC) frames with fully reinforced concrete infills. In some cases, windows and door openings are left inside infill walls for architectural or functional reasons during the strengthening of reinforced concrete-framed buildings. However, the seismic performance of multistory, multibay, reinforced concrete frames that are strengthened by reinforced concrete wing walls is not well known. The main purpose of this study is to investigate the experimental behavior of vulnerable multistory, multibay, reinforced concrete frames that were strengthened by introducing wing walls under a lateral load. For this purpose, three 2-story, 2-bay, 1/3-scale test specimens were constructed and tested under reversed cyclic lateral loading. The total shear wall (including the column and wing walls) length and the location of the bent beam bars were the main parameters of the experimental study. According to the test results, the addition of wing walls to reinforced concrete frames provided significantly higher ultimate lateral load strength and higher initial stiffness than the bare frames did. While the total shear wall length was increased, the lateral load carrying capacity and stiffness increased significantly.

Seismic Behavior Investigation of the Corrugated Steel Shear Walls Considering Variations of Corrugation Geometrical Characteristics

  • Farzampour, Alireza;Mansouri, Iman;Hu, Jong Wan
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1297-1305
    • /
    • 2018
  • The corrugated steel plate shear walls have recently been proposed to address the seismic issues associated with simple steel plate shear walls; however, stiffness, strength, and ductility of the corrugated shear walls are significantly affected by varying the corrugation geometry under seismic loading. The present study investigates steel shear walls' models with corrugated or simple infill plates subjected to monotonic and cyclic loads. The performance of the corrugated steel plate is evaluated and then compared to that of the simple steel plates by evaluating the damping ratios and energy dissipation capability. The effect of corrugation profile angle, the existence of an opening, and the corrugation subpanel length are numerically investigated after validation of the finite element modeling methodology. The results demonstrate that incorporating corrugated plates would lead to better seismic damping ratios, specifically in the case of opening existence inside of the infill plate. Specifically, the corrugation angle of $30^{\circ}$ decreases the ultimate strength, while increasing the initial stiffness and ductility. In addition, the subpanel length of 100 mm is found to be able to improve the overall performance of shear wall by providing each subpanel appropriate support for the adjacent subpanel, leading to a sufficient buckling resistance performance.

Experimental damage evaluation of prototype infill wall based on forced vibration test

  • Onat, Onur
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.77-90
    • /
    • 2019
  • This paper aims to investigate vibration frequency decrease (vibration period elongation) of reinforced concrete (RC) structure with unreinforced infill wall and reinforced infill wall exposed to progressively increased artificial earthquake load on shaking table. For this purpose, two shaking table experiments were selected as a case study. Shaking table experiments were carried on 1:1 scaled prototype one bay one storey RC structure with infill walls. The purpose of this shaking table experiment sequence is to assess local behavior and progressive collapse mechanism. Frequency decrease and eigen-vector evolution are directly related to in-plane and out-of-plane bearing capacities of infill wall enclosure with reinforced concrete frame. Firstly, frequency decrease-damage relationship was evaluated on the base of experiment results. Then, frequency decrease and stiffness degradation were evaluated with applied Peak Ground Acceleration (PGA) by considering strength deterioration. Lastly, eigenvector evolution-local damage and eigenvector evolution-frequency decrease relationship was investigated. Five modes were considered while evaluating damage and frequency decrease of the tested specimens. The relationship between frequency decrease, stiffness degradation and damage level were presented while comparing with Unreinforced Brick Infill (URB) and Reinforced Infill wall with Bed Joint Reinforcement (BJR) on the base of natural vibration frequency.

Seismic Reinforcement of Rural Low-rise Building using Carbon Fiver Plate (탄소판가새를 이용한 농촌 저층건물의 내진보강)

  • Jung, Dong-Jo;Choi, Sung-Dae
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2014
  • In the past, Korea was classified as a region not affected by earthquakes. However, recent increase of earthquakes has forced to strengthen standards of earthquake resistant designs of structures to minimize seismic damage. In addition, it was thought that masonry infill walls in buildings are only acting as partitions, so these walls are not considered in analyzing building structures. But it was found that when seismic loads are applied to a structure with masonry infill walls, the walls affect the structure. Accordingly, this study conducted nonlinear static analyses for a structure constructed before applying earthquake resistant designs in two cases: when considering masonry walls and when not. The result showed that the seismic performance of the structure is insufficient. Thus, the structural resistance of the structure was also studied in two cases: when reinforcing with steel plate braces and when using carbon fiber braces. In the two cases reinforcing two different stiffeners, it was appeared that the behaviors of the structure were similar, though the cross-section area of a carbon fiber brace used to reinforcing the structure is only 12.6% of a steel plate brace, and its weight is only 2.8%. Thus, the reinforcing effect of the thin, light-weighted carbon fiber brace is much larger than that of the steel plate brace, when considering usability and constructability of both materials.