• Title/Summary/Keyword: Inference system

Search Result 1,627, Processing Time 0.022 seconds

A Construction of Fuzzy Inference Network based on Neural Logic Network and its Search Strategy

  • Lee, Mal-rey
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2000.11a
    • /
    • pp.375-389
    • /
    • 2000
  • Fuzzy logic ignores some information in the reasoning process. Neural networks are powerful tools for the pattern processing, but, not appropriate for the logical reasoning. To model human knowledge, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy inference is a fuzzy logical reasoning, we construct fuzzy inference network based on the neural logic network, extending the existing rule- inference. network. And the traditional propagation rule is modified. For the search strategies to find out the belief value of a conclusion in the fuzzy inference network, we conduct a simulation to evaluate the search costs for searching sequentially and searching by means of search priorities.

  • PDF

Design of Fuzzy-Sliding Model Control with the Self Tuning Fuzzy Inference Based on Genetic Algorithm and Its Application

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyn
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.58-65
    • /
    • 2001
  • This paper proposes a self tuning fuzzy inference method by the genetic algorithm in the fuzzy-sliding mode control for a robot. Using this method, the number of inference rules and the shape of membership functions are optimized without an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. And, it is guaranteed that he selected solution become the global optimal solution by optimizing the Akaikes information criterion expressing the quality of the inference rules. The trajectory tracking simulation and experiment of the polishing robot show that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the proposed fuzzy-sliding mode controller provides reliable tracking performance during the polishing process.

  • PDF

Web-enabled Healthcare System for Hypertension: Hyperlink-based Inference Approach (고혈압관리를 위한 웹 기반의 지능정보시스템: 하이퍼링크를 이용한 추론방식으로)

  • Song, Yong-Uk;Ho, Seung-Hee;Chae, Young-Moon;Cho, Kyoung-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.1
    • /
    • pp.91-107
    • /
    • 2003
  • In the conduct of this study, a web-enabled healthcare system for the management of hypertension was implemented through a hyperlink-based inference approach. The hyperlink-based inference platform was implemented using the hypertext capacity of HTML which ensured accessibility, multimedia facilities, fast response, stability, ease of use and upgrade, and platform independency of expert systems. Many HTML documents, which are hyperlinked to each other based on expert rules, were uploaded beforehand to perform the hyperlink-based inference. The HTML documents were uploaded and maintained automatically by our proprietary tool called the Web-Based Inference System (WeBIS) that supports a graphical user interface (GUI) for the input and edit of decision graphs. Nevertheless, the editing task of the decision graph using the GUI tool is a time consuming and tedious chore when the knowledge engineer must perform it manually. Accordingly, this research implemented an automatic generator of the decision graph for the management of hypertension. As a result, this research suggests a methodology for the development of Web-enabled healthcare systems using the hyperlink-based inference approach and, as an example, implements a Web-enabled healthcare system for hypertension, a platform which performed especially well in the areas of speed and stability.

  • PDF

Collaborative Inference for Deep Neural Networks in Edge Environments

  • Meizhao Liu;Yingcheng Gu;Sen Dong;Liu Wei;Kai Liu;Yuting Yan;Yu Song;Huanyu Cheng;Lei Tang;Sheng Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1749-1773
    • /
    • 2024
  • Recent advances in deep neural networks (DNNs) have greatly improved the accuracy and universality of various intelligent applications, at the expense of increasing model size and computational demand. Since the resources of end devices are often too limited to deploy a complete DNN model, offloading DNN inference tasks to cloud servers is a common approach to meet this gap. However, due to the limited bandwidth of WAN and the long distance between end devices and cloud servers, this approach may lead to significant data transmission latency. Therefore, device-edge collaborative inference has emerged as a promising paradigm to accelerate the execution of DNN inference tasks where DNN models are partitioned to be sequentially executed in both end devices and edge servers. Nevertheless, collaborative inference in heterogeneous edge environments with multiple edge servers, end devices and DNN tasks has been overlooked in previous research. To fill this gap, we investigate the optimization problem of collaborative inference in a heterogeneous system and propose a scheme CIS, i.e., collaborative inference scheme, which jointly combines DNN partition, task offloading and scheduling to reduce the average weighted inference latency. CIS decomposes the problem into three parts to achieve the optimal average weighted inference latency. In addition, we build a prototype that implements CIS and conducts extensive experiments to demonstrate the scheme's effectiveness and efficiency. Experiments show that CIS reduces 29% to 71% on the average weighted inference latency compared to the other four existing schemes.

Design and Implementation of the ECBM for Inference Engine (추론엔진을 위한 ECBM의 설계 구현)

  • Shin, Jeong-Hoon;Oh, Myeon-Ryoon;Oh, Kwang-Jin;Rhee, Yang-Weon;Ryu, Keun-Ho;Kim, Young-Hoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.12
    • /
    • pp.3010-3022
    • /
    • 1997
  • Expert system is one of AI area which was came out at the end of 19705s. It simulates the human's way of thinking to give solutions of Problem in many applications. Most expert system consists of many components such as inference engine, knowledge base, and so on. Especially the performance of expert system depends on the control of enfficiency of inference engine. Inference engine has to get features; tirst, if possible to minimize restrictions when the knowledge base is constructed second, it has to serve various kinds of inferencing methods. In this paper, we design and implement the inference engine which is able to support the general functions to knowledge domain and inferencing method. For the purpose, forward chaining, backward chaining, and direct chaining was employed as an inferencing method in order to be able to be used by user request selectively. Also we not on1y selected production system which makes one ease staradization and modulation to obtain knowledges in target domain, but also constructed knowledge base by means of Extended Clause Bit Metrics (ECBM). Finally, the performance evaluation of inference engine between Rete pattern matching and ECBM has been done.

  • PDF

Multiple Instance Mamdani Fuzzy Inference

  • Khalifa, Amine B.;Frigui, Hichem
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.217-231
    • /
    • 2015
  • A novel fuzzy learning framework that employs fuzzy inference to solve the problem of Multiple Instance Learning (MIL) is presented. The framework introduces a new class of fuzzy inference systems called Multiple Instance Mamdani Fuzzy Inference Systems (MI-Mamdani). In multiple instance problems, the training data is ambiguously labeled. Instances are grouped into bags, labels of bags are known but not those of individual instances. MIL deals with learning a classifier at the bag level. Over the years, many solutions to this problem have been proposed. However, no MIL formulation employing fuzzy inference exists in the literature. Fuzzy logic is powerful at modeling knowledge uncertainty and measurements imprecision. It is one of the best frameworks to model vagueness. However, in addition to uncertainty and imprecision, there is a third vagueness concept that fuzzy logic does not address quiet well, yet. This vagueness concept is due to the ambiguity that arises when the data have multiple forms of expression, this is the case for multiple instance problems. In this paper, we introduce multiple instance fuzzy logic that enables fuzzy reasoning with bags of instances. Accordingly, a MI-Mamdani that extends the standard Mamdani inference system to compute with multiple instances is introduced. The proposed framework is tested and validated using a synthetic dataset suitable for MIL problems. Additionally, we apply the proposed multiple instance inference to fuse the output of multiple discrimination algorithms for the purpose of landmine detection using Ground Penetrating Radar.

Development of Expert Systems using Automatic Knowledge Acquisition and Composite Knowledge Expression Mechanism

  • Kim, Jin-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.447-450
    • /
    • 2003
  • In this research, we propose an automatic knowledge acquisition and composite knowledge expression mechanism based on machine learning and relational database. Most of traditional approaches to develop a knowledge base and inference engine of expert systems were based on IF-THEN rules, AND-OR graph, Semantic networks, and Frame separately. However, there are some limitations such as automatic knowledge acquisition, complicate knowledge expression, expansibility of knowledge base, speed of inference, and hierarchies among rules. To overcome these limitations, many of researchers tried to develop an automatic knowledge acquisition, composite knowledge expression, and fast inference method. As a result, the adaptability of the expert systems was improved rapidly. Nonetheless, they didn't suggest a hybrid and generalized solution to support the entire process of development of expert systems. Our proposed mechanism has five advantages empirically. First, it could extract the specific domain knowledge from incomplete database based on machine learning algorithm. Second, this mechanism could reduce the number of rules efficiently according to the rule extraction mechanism used in machine learning. Third, our proposed mechanism could expand the knowledge base unlimitedly by using relational database. Fourth, the backward inference engine developed in this study, could manipulate the knowledge base stored in relational database rapidly. Therefore, the speed of inference is faster than traditional text -oriented inference mechanism. Fifth, our composite knowledge expression mechanism could reflect the traditional knowledge expression method such as IF-THEN rules, AND-OR graph, and Relationship matrix simultaneously. To validate the inference ability of our system, a real data set was adopted from a clinical diagnosis classifying the dermatology disease.

  • PDF

(On designing Temperature Control System of the Air-conditioner using immune system) (면역 시스템을 이용한 에어콘의 온도 제어 시스템 설계)

  • Seo, Jae-Yong;Jo, Hyeon-Chan;Jeon, Hong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • In this paper, we propose temperature inference system for indoor and outdoor temperature of the Air-Conditioner with limited sensors. The proposed system based on the network theory of biological immune system consists of indoor and outdoor temperature inference process. It is designed that on-line temperature inference is possible. This system is admirable for unlearned data as well as given input data by making efficient use of previous information.

The application of a fuzzy inference system and analytical hierarchy process based online evaluation framework to the Donghai Bridge Health Monitoring System

  • Dan, Danhui;Sun, Limin;Yang, Zhifang;Xie, Daqi
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.129-144
    • /
    • 2014
  • In this paper, a fuzzy inference system and an analytical hierarchy process-based online evaluation technique is developed to monitor the condition of the 32-km Donghai Bridge in Shanghai. The system has 478 sensors distributed along eight segments selected from the whole bridge. An online evaluation subsystem is realized, which uses raw data and extracted features or indices to give a set of hierarchically organized condition evaluations. The thresholds of each index were set to an initial value obtained from a structure damage and performance evolution analysis of the bridge. After one year of baseline monitoring, the initial threshold system was updated from the collected data. The results show that the techniques described are valid and reliable. The online method fulfills long-term infrastructure health monitoring requirements for the Donghai Bridge.

A Study of Sensor Reasoning for the CBM+ Application in the Early Design Stage (CBM+ 적용을 위한 설계초기단계 센서선정 추론 연구)

  • Shin, Baek Cheon;Hur, Jang Wook
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.1
    • /
    • pp.84-89
    • /
    • 2022
  • For system maintenance optimization, it is necessary to establish a state information system by CBM+ including CBM and RCM, and sensor selection for CBM+ application requires system process for function model analysis at the early design stage. The study investigated the contents of CBM and CBM+, analyzed the function analysis tasks and procedures of the system, and thus presented a D-FMEA based sensor selection inference methodology at the early stage of design for CBM+ application, and established it as a D-FMEA based sensor selection inference process. The D-FMEA-based sensor inference methodology and procedure in the early design stage were presented for diesel engine sub assembly.