• 제목/요약/키워드: Inference system

검색결과 1,627건 처리시간 0.024초

3차원 영상복원 데이터를 이용한 HMM 기반 의도인식 시스템 (HMM-based Intent Recognition System using 3D Image Reconstruction Data)

  • 고광은;박승민;김준엽;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제22권2호
    • /
    • pp.135-140
    • /
    • 2012
  • 대뇌 상의 mirror neuron system은 시각 정보에 기반한 모방학습 기능을 담당한다. 관측자의 mirror neuron system 영역을 관찰할 때, 행위자가 수행하는 목적성 행위의 전체가 아닌, 부분적으로 가려지거나 보이지 않는 영역을 포함하는 경우에도 해당 영역의 뉴런이 발화되는 과정을 통해 전체 행동의 의도를 유추할 수 있다. 이러한 모방학습 기능을 3D 비전 기반 지능 시스템에 적용하는 것이 본 논문의 목표이다. 본 연구실에서 선행 연구된 스테레오 카메라를 기반으로 획득된 3차원 영상에 대한 복원을 수행한다. 이 때 3차원 입력영상은 부분적으로 가려진 영역을 포함하는 손동작의 순차적 연속영상이다. 복원 결과를 기반으로 가려진 영역을 내포한 행위에 대하여 LK optical flow, unscented Kalman filter를 이용한 특징검출을 수행하고 의도인식의 수행을 위해, Hidden Markov Model을 활용한다. 순차적 입력데이터에 대한 동적 추론 기능은 가려진 영역을 포함한 손동작 인식 수행에 있어 적합한 특성을 가진다. 본 논문에서 제안하는 의도 인식을 위해 선행 연구에서 복원 영상에서의 객체의 윤곽선 및 특징 검출을 시뮬레이션 하였으며, 검출 특징에 대한 시간적 연속 특징벡터를 생성하여 Hidden Markov Model에 적용함으로써, 의도 패턴에 따른 손동작 분류 시뮬레이션을 수행하였다. 사후 확률 값의 형태로 손 동작 분류 결과를 얻을 수 있었으며, 이를 통한 성능의 우수함을 입증하였다.

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

GMM과 클러스터링 기법에 의한 뉴로-퍼지 시스템 모델링 (A Neuro-Fuzzy System Modeling using Gaussian Mixture Model and Clustering Method)

  • 김승석;곽근창;유정웅;전명근
    • 한국지능시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.571-576
    • /
    • 2002
  • 본 논문에서는 여러 분야에서 널리 응용되고 있는 적응 뉴로-퍼지 시스템(ANFIS)의 성능 개선에 있어서 전제부 파라미터를 효과적으로 초기화 시키는 방법을 제안한다. 기존의 그리드 분할을 이용한 입력공간 선택 방법은 ANFIS의 규칙 생성에 있어서 얻어진 규칙의 수가 지수적으로 증가하는 단점이 있다. 이에, 본 연구에서는 GMM에서의 최대우도추정을 이용한 EM 알고리즘을 통하여 초기치에 의하여 성능의 영향이 좌우되는 ANFIS의 입력으로 주어 제안된 클러스터링 기법에 의하여 모델의 성능을 개선하고자 한다. 제안된 방법의 클러스터링 방법은 통계적 방법에 근거하여 좋은 성능의 파라미터를 획득할 수 있어 주어진 모델에 대한 ANFIS의 성능을 개선할 수 있다. 이들 방법의 유용함을 전형적인 다변수 비선형 데이터인 자동차 연료 예측 문제와 정수장 응집제 주입 문제에 적용하여 제안된 방법이 이전의 연구보다 성능이 개선되는 것을 통하여 보였다.

IoT 환경에서 Edge Computing을 위한 전문가 시스템 기반 상황 인식 (Expert System-based Context Awareness for Edge Computing in IoT Environment)

  • 송준석;이병준;김경태;윤희용
    • 인터넷정보학회논문지
    • /
    • 제18권2호
    • /
    • pp.21-30
    • /
    • 2017
  • 모든 사물에서 네트워크 및 컴퓨팅이 가능한 IoT(Internet of Things) 환경이 빠르게 확산되고 있다. IoT 환경은 클라우드 기반 중앙처리 구조를 통해 데이터를 처리하고 사용자에게 서비스를 제공하기 때문에 병목현상 및 서비스 지연이 발생할 수 있다. 이를 해결하기 위해, 최근 단말 IoT 노드와 네트워크에서 직접 데이터를 처리하여 사용자에게 서비스를 제공하는 Edge Computing이 주목받고 있으며 이러한 Edge Computing 환경에서 사용자에게 효율적으로 지능형 서비스를 제공하기 위한 연구가 지속되고 있다. 본 논문에서는 IoT 환경에서 Edge Computing을 위한 전문가 시스템 기반 상황 인식 서비스 기법을 제안한다. 제안하는 기법은 자원 제한적인 IoT 노드 간 효율적인 협업을 기반으로 데이터를 실시간으로 처리하고 상황 인식을 통해 사용자에게 최적화된 맞춤형 서비스를 제공한다. 또한, 사용자는 사용 용도에 따라 직접 상황 인식 서비스를 수정하여 원하는 서비스를 제공받을 수 있다. 제안하는 기법을 스마트 홈 환경에서 3가지 방범 서비스 모드를 이용하여 테스트하였으며, 본 논문의 IoT 기반 전문가 시스템 서버와 기존 PC 기반 전문가 시스템 서버의 자원 소모량을 비교하여 제안하는 기법의 안정성을 입증하였다.

퍼지논리와 신경망 융합에 의한 로보트매니퓰레이터의 지능형제어 시스템 개발 (On Developing The Intellingent contro System of a Robot Manupulator by Fussion of Fuzzy Logic and Neural Network)

  • 김용호;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제5권1호
    • /
    • pp.52-64
    • /
    • 1995
  • 로보트 매니퓰레이터는 고도의 비선형 시변 시스템으로써 정밀한 제어가 매우 어려운 제어 대상으로 인식되어 왔으며 따라서 수많은 제어이론의 적용대상이 되어왔다. 로보트 매니퓰레이터의 제어에는 두가지 형태가 있는데 한가지는 궤적계획이고, 또한가지는 궤적 추종이다. 본 논문에서는 궤적 추종을 목적으로 하고, 이를 위해 퍼지논리와 신경회로망을 결합한 지능형 제어를 제안한다. 제안된 제어시스템은 사고 및 추론과 같은 인간의 인식처리에 해당하는 불확실한 것들의 구체화를 가능케하는 퍼지논리와 학습 및 병렬처리능력이 있는 신경회로망을 융합하여 구성된 퍼지-신경망 제어시스템이다. 그러나 이러한 장점을 갖는 퍼지-신경망 제어기도 정확한 제어 규칙의 발생은 어려은데 이는 신경회로망의 지역적 최소치에 빠지는 특성에 기인한다고 볼 수 있다. 그리고 일반적으로 시스템의 비선형 정도는 탐색에 의해서만 알수 있는 성질의 것이므로 본 논문에서는 최적의 탐색알고리듬으로 널리 인정되고 있는 유전알고리듬을 사용하여 전역적이 규칙공간을 탐색한 후 이를 바탕으로 퍼지-신경망 제어기를 완성한다. 제안된 제어시스템의 효율성은 2자유도의 로보트 매니퓰레이터를 사용하여 컴퓨터의 모의실험을 통해 입증된다.

  • PDF

퍼지 다층 제어기를 이용한 전방향 이동로봇의 추적제어에 관한 연구 (A Study on Tracking Control of Omni-Directional Mobile Robot Using Fuzzy Multi-Layered Controller)

  • 김상대;김승우
    • 한국산학기술학회논문지
    • /
    • 제12권4호
    • /
    • pp.1786-1795
    • /
    • 2011
  • 사람이 생활하는 환경에서 일반적인 휠베이스 이동(Mobility) 방식의 로봇은 장애물에 둘러싸여 로봇의 움직임에 있어 자유로운 주행 제약을 받게 된다. 장애물을 신속하게 회피하려면 회전과정 없이 단순히 좌우 이동만 하면 되는 홀로노믹(Holonomic) 시스템 특성의 이동로봇이 필요하다. 본 논문에서는 세 개의 옴니휠(Omni-Wheels)을 사용한 홀로노믹 이동로봇의 추적제어기를 개발한다. 옴니휠을 이용한 이동로봇은 시스템 파라미터의 불확실성(uncertainty)으로 인하여 선형 제어기로는 추적제어가 매우 어려운 상황이다. 그러므로 강인성이 탁월한 퍼지 제어기를 이용한 퍼지 적응 제어 기법을 설계하여 옴니휠 이동 로봇의 추적제어(tracking control) 성능을 높인다. 본 논문에서 제어 대상 시스템의 매개 변수의 불확실성에 강인한 퍼지 제어기를 병렬로 설계하고 시스템 인식(system identification)을 이용하여 대상 시스템이 특성 변화에 적절히 대처할 수 있는 적합한 퍼지 제어기를 선택한 후 피드백 제어를 실행하는 퍼지 다층 제어기(Fuzzy Multi-Layered Controller) 시스템을 이용한 적응 제어기법을 제시한다. 고전 적응 제어기와 기존 퍼지 적응 제어기의 문제점을 극복한 퍼지 적응 제어기를 도입하여 강인 제어기를 병렬로 설계하고 시스템 인식을 이용하여 대상 시스템의 특성 변화에 적절히 대처할 수 있는 적합한 퍼지 제어기를 선택한 후 피드백 제어를 실행하는 퍼지 다층 제어기(FMLC)를 제시한다.

토픽맵 기반의 기록정보 검색시스템 구축에 관한 연구 (Construction of Record Retrieval System based on Topic Map)

  • 권창호
    • 기록학연구
    • /
    • 제19호
    • /
    • pp.57-102
    • /
    • 2009
  • 최근, 웹을 이용한 기록정보의 유통과 이용이 증가하고, 정보적 활용 가치가 제고되어 웹사이트를 이용한 기록정보서비스가 기록관의 중요업무로 부각되고 있다. 웹을 이용한 기록정보서 비스의 핵심은 이용자가 원하는 기록정보의 검색을 용이하게 하는데 있다. 검색을 용이하게 하기 위해서는 검색시스템의 기본 메커니즘인 이용자질의와 기록정보표현의 매칭의 정확성이 요구된다. 이를 위해 기록정보 관리자들은 다양한 정보표현 도구를 이용하고 있지만, 이용자들은 여전히 정보검색 과정에서 어려움을 겪고 있다. 이를 개선하기 위해 본 연구에는 기록물의 기술정보 메타데이타를 중심으로 정보자원을 구조화하여 이용자 질의의 접근점을 확장하고, 의미있는 매칭을 통해 지식자원화된 검색결과값을 제공하기 위해 토픽맵 기반의 기록정보 검색시스템을 구축하고자 한다. 구축대상은 웹사이트를 이용하는 불특정 이용자이며, 구축범위는 국가기록포탈의 기록자원 중 대통령 기록물로 선정하였다. 구축단계는 다음과 같다. 1)기록물의 기술정보 메타데이타를 중심으로 토픽맵 기반의 기록정보서비스를 위한 온톨로지 모델을 설계한다. 2)설계한 온톨로지 모델을 바탕으로 국가기록포탈에서 추출한 정보자원목록을 에디터를 이용해 토픽맵으로 반입하여 검색시스템으로 구현한다. 3)구축된 검색시스템의 사용자 인터페이스에서 테스트질의를 통해 토픽맵기반 검색시스템의 특징을 확인하고 그 의미를 평가한다. 최종적으로, 의미적 추론에 의한 연관 네비게이션검색을 확인하고, 분산된 기록정보자원 간의 연계된 결과값을 통해 지식자원화의 가능성도 제시한다.

퍼지 제어 시스템과 RGB LED 모듈을 이용한 선박 실내용 조명 제어 시스템에 관한 연구 (A Study on the Lighting Control System using Fuzzy Control System and RGB Modules in the Ship's Indoor)

  • 남영철;이상배
    • 한국항해항만학회지
    • /
    • 제42권6호
    • /
    • pp.421-426
    • /
    • 2018
  • 현재 기존에 상용화 되어 있는 LED 조명기기의 경우, LED 동작 시퀀스가 고정이 되어 있는 상태로 판매되고 있다. 이와 같은 상태로는 외부 환경 요인이 고려되지 않고 오직 장소에만 적용되는 조명 환경 용도로서의 기능만을 수행한다. 현재는 선박 내 외부 환경 요인의 변화에 따른 최적의 조명 환경 조성이 어렵게 되어있다. 그러므로 외부 환경 요인의 변화에 좀 더 유기적이고 능동적으로 적응할 수 있도록 외부 환경 값을 입력받아 실시간으로 최적 조명 값이 반영될 수 있도록 해야 될 필요성이 있다는 결론을 얻게 되었다. 본 논문에서는 마이크로프로세서를 선박 통합관리 시스템으로 활용하여 기존의 외부 환경 요인에 의하여 실시간으로 변동되는 환경 데이터를 다루며, 외부 환경요인을 확인하고 또한 퍼지 추론 시스템을 접목하여 RGB LED 모듈 조명 제어가 가능한 제어기를 구성하였다. 이를 위하여 퍼지 제어 알고리즘을 설계하고, 퍼지 제어 시스템을 구성하였다. 외부 환경 요소인 피사체와의 거리, 조도 값을 센서로 통해 입력 받고 이 값들을 퍼지 제어 알고리즘을 통하여 최적 조명 값으로 변환하여 RGB LED 모듈 조광 제어를 통하여 표현하고 퍼지 제어 시스템의 실질적인 효능을 확인하였다.

의약 용기의 다중 카메라 인라인 검사 시스템에서의 품질 검사를 위한 딥러닝 네트워크 개발 (Development of a Deep Learning Network for Quality Inspection in a Multi-Camera Inline Inspection System for Pharmaceutical Containers)

  • 이태윤;윤석문;이승호
    • 전기전자학회논문지
    • /
    • 제28권3호
    • /
    • pp.474-478
    • /
    • 2024
  • 본 논문에서는 의약 용기의 다중카메라 인라인 검사 시스템에서의 품질 검사를 위한 딥러닝 네트워크를 제안한다. 제안하는 딥러닝 네트워크는 현장에서 생산되는 의약 용기의 데이터를 사용하여 의약 용기에 특화된 딥러닝 네트워크로 더욱 정확하게 품질을 검사한다. 또한, 인라인 검사가 가능한 딥러닝 네트워크를 사용하여 품질 검사의 속도를 증대시킬 수 있다. 다중카메라 인라인 검사 시스템에서의 품질 검사를 위한 딥러닝 네트워크의 개발은 3단계로 나뉜다. 첫 번째로 실제 의약 용기 생산 현장에서 1개의 이물검사용 line 카메라, 3개의 치수검사용 area 카메라를 통해 얻은 약 10,000장의 이미지로 데이터셋을 구축한다. 두 번째로 의약 용기 데이터 전처리에서는 이물 검사, 치수검사의 용도에 맞게 불량이 일어날 수 있는 곳에 ROI를 지정하여 데이터를 전처리한다. 세 번째로 전처리된 데이터를 이용하여 딥러닝 네트워크를 학습한다. 딥러닝 네트워크는 적은 채널 수를 적용하여 linear layer를 사용하지 않아 판정 속도를 향상하고, PReLU와 residual learning를 적용하여 정확도를 향상한다. 이를 통해 4개의 카메라에서 구축한 데이터셋에 맞는 4개의 딥러닝 모듈을 제작한다. 제안된 의약 용기의 다중카메라 인라인 검사 시스템에서의 품질 검사를 위한 딥러닝 네트워크의 성능을 평가하기 위하여 공인시험기관에서 실험한 결과는, 딥러닝 모듈의 판별 정확도가 99.4%로 세계 최고 수준인 95% 보다 우수한 성적을 달성하였고, 평균 판별 속도가 0.947초로 측정되어 세계 최고 수준인 1초보다 우수한 성적을 달성하였다. 따라서, 본 논문에서 제안한 의약 용기의 다중카메라 인라인 검사 시스템에서의 품질 검사를 위한 딥러닝 네트워크의 효용성이 입증되었다.

웹 고객의 개인화를 지원하는 지식기반 통합시스템 (A Knowledge-assisted Hybrid System for effectively Supporting Personalization of a Web Customer)

  • 김철수
    • 정보처리학회논문지B
    • /
    • 제9B권1호
    • /
    • pp.1-6
    • /
    • 2002
  • 인터넷이 등장하면서 수 많은 고객이 웹 사이트를 방문하고, 구매나 컨텐츠 이용 등의 다양한 활동을 하게 된다. 그로 인해 웹 시스템에는 방대한 양의 자로가 축적되고 그 자료는 고객의 개인화(Personalization)된 서비스를 가능하게 한다. 고객의 개별적인 특성이나 선호도를 반영한 개인화는 웹 시스템은 봇물처럼 개발되고 있으며, 인터넷 시스템에서 고객의 정보를 분류하기 위해서는 정성적인 지식과 정량적인 지식을 체계적으로 반영하여야 한다. 이러한 두 종류의 지식이 최적의 솔루션을 제공할 수 있도록 사용되어지기 위해서는 일관성과 유연성을 갖는 지식 통합이 이루어져야 한다. 지식 통합은 고객의 개인 선호도를 반영하거나 잘 분류할 수 있게 하기 위해서 먼저 지식 표현이 전제된다. 본 연구는 이러한 지식 통합시스템을 웹 투자 고객에 초점을 맞추어 프로토타입을 개발하였다. 개발된 시스템은 정성적 지식의 추출과 추론 방식 그리고 정성적 지식과 정량적 지식과의 통합 방식을 사용하고 있으며, 고객의 개인 선호도 입력에서부터 포트폴리오 구성가지 전반적인 프로시져를 잘 반영하고 있다. 제안한 지식기반 통합 모형을 가지고 실험적인 분석을 통하여 개인 선호도를 고려한 투자의사결정 문제의 퇴적 포트폴리오 구성에서 우수성을 보이며 정성적 지식이 갖는 투자환경의 변화에 매우 탄력적임을 보여준다.