• Title/Summary/Keyword: Inference network

Search Result 566, Processing Time 0.029 seconds

An Interval Valued Bidirectional Approximate Reasoning Method Based on Similarity Measure

  • Chun, Myung-Geun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.579-584
    • /
    • 1998
  • In this work, we present a method to deal with the interval valued decision making systems. First, we propose a new type of equality measure based on the Ordered Weighted Averaging (OWA) operator. The proposed equality measure has a structure to render the extreme values of the measure by choosing a suitable weighting vector of the OWA operator. From this property, we derive a bidirectional fuzzy inference network which can be applied for the decisionmaking systems requiring the inverval valued decisions.

  • PDF

Inference Network-Based Retrieval Model for Web Search Environment (웹 검색 환경에 적용할 추론 망 기반 검색모델)

  • 최익규;김민구
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.19-21
    • /
    • 2001
  • 대다수의 사용자는 웹 검색에서 자신이 찾고자 하는 것을 표현할 때, 평균 2, 3개의 단어를 사용하고 있다. 벡터 모델이나 추론 망 모델에서 이런 질의 정보를 이용하여 좋은 결과를 얻기에는 몇 가지 어려움이 있다. 특히 추론 망 모델에서 많이 사용되는 유사도 계산식인 weighted-sum방법은 질의에 나타나는 단어의 수가 적고 많은 문서들이 이 단어들을 모두 가지고 있을 경우에 좋지 않은 검색결과를 보여주고 있다. 본 논문은 추론 망 모델에 적용되는 유사도 계산식인 weighted-sum방법을 개선하였고, 이를 기반으로 Web Trec 9의 자료를 검색하여 좋은 결과를 얻었다.

  • PDF

Determination of Usenet News Groups by Fuzzy Inference and Neural Network (퍼지추론과 신경망을 사용한 유즈넷 뉴스그룹 결정)

  • 김종완;김희재;김병만
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.401-404
    • /
    • 2004
  • 본 연구에서는 다양한 뉴스그룹들 중에서 사용자의 취향과 유사한 뉴스그룹들을 코호넨 신경망을 이용하여 추천해주는 방법을 제시한다. 신경망을 학습시키기 위한 뉴스 문서의 키워드들을 선택하기 위해 여러 문서들로부터 후보 용어들을 추출하고 퍼지 추론을 적용하여 대표 용어들을 선택한다. 하지만 신경망의 학습패턴을 관찰해 보면, 맡은 부분이 비어있는 희소성 문제를 발견할 수 있다. 이에 본 연구에서는 통계적인 결정계수를 도입하여 불필요한 차원을 제거한 후 신경망을 학습시키는 새로운 방법을 제안한다. 제안된 방법은 모든 차원을 활용할 때 보다 클러스터내 거리와 클러스터간 거리의 척도를 이용한 클러스터 중첩도 면에서 우수한 분류 성능을 보여줌을 확인하였다.

  • PDF

A construction of fuzzy controller using learning (학습을 이용한 퍼지 제어기의 구성)

  • 안상철;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.484-489
    • /
    • 1992
  • The inference of fuzzy controller can be considered a mapping from the controller input to membership value. The membership value, a kind of weight, has a role to decide if the input is appropriate to the rule. The membership function is described by several values, which are decided by a learning method. The learning method is adopted from adaptive filtering theory. The simulation shows the proposed fuzzy controller can learn linear and nonlinear functions. the structure of the proposed fuzzy controller becomes a kind of neural network.

  • PDF

Snake Robot Motion Scheme Using Image and Voice (감각 정보를 이용한 뱀 로봇의 행동구현)

  • 강준영;김성주;조현찬;전홍태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.127-130
    • /
    • 2002
  • Human's brain action can divide by recognition and intelligence. recognition is sensing voice, image and smell and Intelligence is logical judgment, inference, decision. To this concept, Define function of cerebral cortex, and apply the result. Current expert system is lack, that reasoning by cerebral cortex and thalamus, hoppocampal and so on. In this paper, With human's brain action, wish to embody human's action artificially Embody brain mechanism using Modular Neural Network, Applied this result to snake robot.

  • PDF

HARMONICS OF INDUSTRIAL POWER ELECTRONIC CONVERTERS IN THE EREQUENCY RANGE UP TO 10 KHZ

  • Buttner, J.;Krechla, A.;Petzoldt, J.;Machost, D.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.598-602
    • /
    • 1998
  • This paper refers to fundamental investigations and simulations of conducted electromagnetic inference emissions produced by power electronic devices in a frequency range from 2 to 10 kHz. The emissions of different industrial power converters were measured and compared. The influence of different working conditions over the altitude of the EMI are represented. Simulations of the power converter system including the line impedance stabilisation network certify the measurements.

  • PDF

Analysis of Open-Source Hyperparameter Optimization Software Trends

  • Lee, Yo-Seob;Moon, Phil-Joo
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.56-62
    • /
    • 2019
  • Recently, research using artificial neural networks has further expanded the field of neural network optimization and automatic structuring from improving inference accuracy. The performance of the machine learning algorithm depends on how the hyperparameters are configured. Open-source hyperparameter optimization software can be an important step forward in improving the performance of machine learning algorithms. In this paper, we review open-source hyperparameter optimization softwares.

FAFS: A Fuzzy Association Feature Selection Method for Network Malicious Traffic Detection

  • Feng, Yongxin;Kang, Yingyun;Zhang, Hao;Zhang, Wenbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.240-259
    • /
    • 2020
  • Analyzing network traffic is the basis of dealing with network security issues. Most of the network security systems depend on the feature selection of network traffic data and the detection ability of malicious traffic in network can be improved by the correct method of feature selection. An FAFS method, which is short for Fuzzy Association Feature Selection method, is proposed in this paper for network malicious traffic detection. Association rules, which can reflect the relationship among different characteristic attributes of network traffic data, are mined by association analysis. The membership value of association rules are obtained by the calculation of fuzzy reasoning. The data features with the highest correlation intensity in network data sets are calculated by comparing the membership values in association rules. The dimension of data features are reduced and the detection ability of malicious traffic detection algorithm in network is improved by FAFS method. To verify the effect of malicious traffic feature selection by FAFS method, FAFS method is used to select data features of different dataset in this paper. Then, K-Nearest Neighbor algorithm, C4.5 Decision Tree algorithm and Naïve Bayes algorithm are used to test on the dataset above. Moreover, FAFS method is also compared with classical feature selection methods. The analysis of experimental results show that the precision and recall rate of malicious traffic detection in the network can be significantly improved by FAFS method, which provides a valuable reference for the establishment of network security system.

An Efficient Node Life-Time Management of Adaptive Time Interval Clustering Control in Ad-hoc Networks (애드혹 네트워크에서 적응적 시간관리 기법을 이용한 클러스터링 노드 에너지 수명의 효율적인 관리 방법)

  • Oh, Young-Jun;Lee, Knag-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.495-502
    • /
    • 2013
  • In the mobile Ad hoc Network(MANET), improving technique for management and control of topology is recognized as an important part of the next generation network. In this paper, we proposed an efficient node life time management of ATICC(Adaptive Time Interval Clustering Control) in Ad-hoc Networks. Ad-hoc Network is a self-configuration network or wireless multi-hop network based on inference topology. This is a method of path routing management node for increasing the network life time through the periodical route alternation. The proposed ATICC algorithm is time interval control technique depended on the use of the battery energy while node management considering the attribute of node and network routing. This can reduce the network traffic of nodes consume energy cost effectively. As a result, it could be improving the network life time by using timing control method in ad-hoc networks.

Development of the Shortest Route Search Algorithm Using Fuzzy Theory (퍼지 추론을 이용한 최단 경로 탐색 알고리즘의 개발)

  • Jung, Yung-Keun;Park, Chang-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.8 s.86
    • /
    • pp.171-179
    • /
    • 2005
  • This paper presents the algorithm using fuzzy inference that preestimates each link speed changed by different kinds of road situations. The elements we are considered are time zone, rainfall probability information and lane control information. This paper is consists of three parts. First of all we set up the fuzzy variables, and preestimate link speed changed by various road situations. For this process, we build the membership functions for each fuzzy variable and establish the fuzzy inference relations to find how fuzzy variables influence on link speed. Second, using backtracking method, we search the shortest route influenced by link speed changed by fuzzy inference. Third, we apply this algorithm to hypothetical network and find the shortest path. As a result, it is shown that this algorithm choose appropriate roundabout path according to the changing road situations.