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Abstract

In this work. we present a method to deal with the interval valued deci-
sion making systems. First, we propose a new type of equality mesure based
on the Ordered Weighted Averaging(OWA) operator. The proposed equal-
ity mesure has a structure to render the extreme values of the mesure by
choosing a suitable weighting vector of the OWA operator. From this prop-
erty, we derive a bidirectional fuzzy inference network which can be applied
for the decision making systems requiring the inverval valued decisions.

1 Introduction

A lot of human knowledges may be viewed as a collection of facts and
rules, each of which may be represented as a fuzzy relation having some pos-
sibility value[5]. From this fact. several forms of fuzzy relational equations
and their analytical solution methods have been presented[5)[6]. However,
most of these analytical solution methods are based on the impractical as-
sumption that there exists a fuzzy relation for all pairs of input and output
fuzzy data simultaneously.

To overcome this difficulty. there were approaches to adopt learning ca-
pability of the neural network for finding an approximate solution of the
max-min fuzzy relational equations 7][2] . These neurocomputational ap-
proaches, however. also have a limitation that they often give only approx-
imate relations as local optimal solutions for the given input and output
fuzzy data.

To alleviate these drawbacks, Bien and Chun [3] proposed a form of fuzzy
relational mapping which handles fuzzy knowledge given as fuzzy input and
output data and supports an approximate reasoning. The inference network
performs a forward and a backward reasoning in knowledge base system.
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2 OWA Operator and Equality Measure

Yager[1] suggested the OWA operator for aggregations lying between the
logical OR and AND. It is defined as follows.

Definition 1: An OWA operator of dimension n is a mapping f : R* —
R that has an associated n vector 1V

W = [wy,we, - wp]”

such that (1) w; € [0,1], (2) 3", w; = 1. Furthermore f(aj, a9, - -,a,) =
>_jw;b; where b; is the jth largest of the a;.

It is noted that different OWA operators are distinguished by their
weighting function. If we choose IV = W0, = [100--- 0] and 1V = W,,;;,, =
[000--- 1], then OW A,(a1, a9, -, an) = Max;(a;) and OW A;(a1.a9. -+ . a,) =
Min;(a;), respectively. When 1V = 1V, = [711 ,ll e %} the OWA operator
performs the averaging operation such as OWA,(ay, a9, -+, a,) = % Soilay).
From the definition of the OWA operator, we can show

OW Ai(ay, a2+~ a,) <OWA(ay,a2---a,) <OWA(ay, a2+ a,) (1)

Now, let us consider the measure of equality or similarity between two fuzzy
vectors z € [0,1]" and y € [0, 1]". Pedrycz[7][8] proposed an equality index
q = (z = y) for two fuzzy values x € {0,1] and y € [0.1] having a strong
logical background expressed as

i=@=)=3le—Aly—D)+@E-DAG—D)] (2

where “—" denotes an implication and Z = 1 — z is the complement of z.
In the sequel. we shall simply adopt the Lukasiewicz implication:

z—y=min(l,1+y—x). (3)

Now, let us consider an equality measure S € [0.1] between two n-
dimensional fuzzy vectors X = [y, @2, -+, zn) and Y = [ys. y2.- - -, y,). Bien

and Chun (3] defined a S as

T

Y 1 oy 17 3 s

S=(X=Y)=1/n)Y Sl@—=y) Ay — z)+ (@ - §)A@G— @)] (4)
—~ 2

The above equlity measure, however, is the only arithmatic averge of the

equality indeces. So, we propose a new type of equality measure based on

the OWA operator from a logical foundation.
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Definition 2: For two fuzzy vector X = [zj.x9, - +,%,) and Y =
W1-Y2. " . yu), its fuzzy measure is

E=(X=Y)=0WA(qi.q.".q.) (5)
where ¢; is the equality index between x; and y; given from (2).

For the proposed equality measure, when we select 1V = 1,0z = [10 - 0]
and W = Wy = 00 -~ 1J7. E = Ey(qi,q2---qn) = Max;(¢;) and
Eif(q1.92---qn) = Min;(q;), respectively. Similarily, if we choose 1} =
Wawg = 22... 1T then E = Eolqi.q2-+-qn) = 15™.(g:) which is equal
to (4). Therefore, we can easily derive follolwing relation:

Elqi.q2-qn) S Elqiq--an) < Eulg, g2 aqn) (6)

To show the qualitative aspect of the proposed equality measure, we
denote the equality measure F(¢;. ¢2) in Figure 1 between X = [z;, 2] and
Y = [y1, 2] for each equality index ¢q; = (21 = y1) € [0 1] and ¢ = (z2 =
yo) € [0 1]. Figure 1 (b), (c), and (d) show F,, F, and FE,, respectively.
At the Figure, more bright part have more higher equality value. From the
point of qualitavive, we can consider V), as an optimistic aggregator because
it takes the maximum value among equality index. Similarily, we can take
E; a pessimistic aggregator. On the other hand, E, belongs between [ and
I£,. The above interpretation can be adopted to the case of n-dimentional
fuzzy vectors.

3 Interval Valued Decision Making System

Let us consider an interval valued decision making system defined as follows.

Definition 3: For a set T of [ pairs of fuzzy input and output data
{(zj,y;)| =; € [0,1]", y; € [0,1]™, j = 1,2,---,1}, an interval valued de-
cision making system performs a mapping Iy : [0,1]* — [0,1]™ and I, :
[0.1]™ — [0,1]™. For a given x which is similar to x;, Iy maps the output y
is to be similar to y;, which corresponds to a forward approximate reason-
ing. As the same token. For a given y which is similar to y;, [, maps the
output z is to be similar to x;. which corresponds to a backward approxi-
mate reasoning. Here. the interval valued decision making system give also
the upper value x, and y,
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Now. to construct the inference network, denote the fuzzy input and
output data as

X; = [r{v%,w{l] and Y; = [y{,yg,---,y{n] j=1,2,--- 1
and encode the weighting values in the inference network as follows:
W/=Xjand Rl =Y, j=12--1 (7)

U/]l‘):Yjanng‘:va J=12 0 (8)

From the above relations, it is easy to show that R/ = 11"? and 1"/ = R’
Let us consider the behavior of the inference network which performs a
bidirectional approximate reasoning.
Step 1: When a fuzzy input vector X € [0,1]" is presented to the layer
1, x; becomes an input value for the 7th unit in layer 1. If we denote
Sf = {s{, sg, e alf} as the equality measure vector, then S/ can be found as
follows.

s]f.:(XEij), j=1,2---.L (9)
Step 2: After computing Sf = (3{7357 .. .7511")’ the outputs of layer 3,
7! = (Z{,Zg, . --,Zlf), are given as
f i f f ) = “ e
Z}fz{sj ifs; 2605, j=1.2,---,1 (10)

0 otherwise

Here. the threshold value 0{ is given to determine the recalling level. That
is, if the equality measure between a fuzzy input data X and the fuzzy data
X; in X' is less than the threshold value 9]f-, then the fuzzy data X; is
discarded in constructing the fuzzy output Y.

Step 3: Finally, the output of layer 4 is obtained by performing the
generalized max-min composition as

Y =2/ o, R (11)

which can be rewritten as

— ; f.f :
Y = fg%(mlnp(zi 7rij))-, 1<j<m

where the generalized intersection min, introduced by Yager is defined in [1]
as follows:

miny(z,y) = 1 — min(1, {(1 — z)? + (1 - y)p}%] forp>1
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4 Concluding Remarks

We have proposed an inference network as a tool for bidirectional ap-
proximate reasoning. If a fuzzy input is given for the inference network.
then the network renders a reasonable fuzzy output after performing the
approximate reasoning based on an equality measure. Also, from its bidi-
rectional structure, if a fuzzy output is given, then the network can find its
corresponding reasonable fuzzy input. In defining the equality measure, we
adopted the Lukasiewicz implication operator. However any given problem
can be handled in a different manner by choosing other implication opera-
tors.

Since the inference network can be designed directly from the given fuzzy
input and output data, it is easy to add or delete knowledge to the inference
network. Noreover, the developed scheme requires only simple arithmetic
operations, it is possible to perform real-time decision making with applica-
tions to control and diagnostic systems in real situations.
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Figure 1. Similarity Measure
(a) Pedrycz’s similarity measure
(b) Maximum similarity measure

(c) Average similarity measure

(d) Minimum similarity measure
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