• Title/Summary/Keyword: Inference network

Search Result 566, Processing Time 0.028 seconds

Parallel Bayesian Network Learning For Inferring Gene Regulatory Networks

  • Kim, Young-Hoon;Lee, Do-Heon
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.202-205
    • /
    • 2005
  • Cell phenotypes are determined by the concerted activity of thousands of genes and their products. This activity is coordinated by a complex network that regulates the expression of genes. Understanding this organization is crucial to elucidate cellular activities, and many researches have tried to construct gene regulatory networks from mRNA expression data which are nowadays the most available and have a lot of information for cellular processes. Several computational tools, such as Boolean network, Qualitative network, Bayesian network, and so on, have been applied to infer these networks. Among them, Bayesian networks that we chose as the inference tool have been often used in this field recently due to their well-established theoretical foundation and statistical robustness. However, the relative insufficiency of experiments with respect to the number of genes leads to many false positive inferences. To alleviate this problem, we had developed the algorithm of MONET(MOdularized NETwork learning), which is a new method for inferring modularized gene networks by utilizing two complementary sources of information: biological annotations and gene expression. Afterward, we have packaged and improved MONET by combining dispersed functional blocks, extending species which can be inputted in this system, reducing the time complexities by improving algorithms, and simplifying input/output formats and parameters so that it can be utilized in actual fields. In this paper, we present the architecture of MONET system that we have improved.

  • PDF

Systems Biology - A Pivotal Research Methodology for Understanding the Mechanisms of Traditional Medicine

  • Lee, Soojin
    • Journal of Pharmacopuncture
    • /
    • v.18 no.3
    • /
    • pp.11-18
    • /
    • 2015
  • Objectives: Systems biology is a novel subject in the field of life science that aims at a systems' level understanding of biological systems. Because of the significant progress in high-throughput technologies and molecular biology, systems biology occupies an important place in research during the post-genome era. Methods: The characteristics of systems biology and its applicability to traditional medicine research have been discussed from three points of view: data and databases, network analysis and inference, and modeling and systems prediction. Results: The existing databases are mostly associated with medicinal herbs and their activities, but new databases reflecting clinical situations and platforms to extract, visualize and analyze data easily need to be constructed. Network pharmacology is a key element of systems biology, so addressing the multi-component, multi-target aspect of pharmacology is important. Studies of network pharmacology highlight the drug target network and network target. Mathematical modeling and simulation are just in their infancy, but mathematical modeling of dynamic biological processes is a central aspect of systems biology. Computational simulations allow structured systems and their functional properties to be understood and the effects of herbal medicines in clinical situations to be predicted. Conclusion: Systems biology based on a holistic approach is a pivotal research methodology for understanding the mechanisms of traditional medicine. If systems biology is to be incorporated into traditional medicine, computational technologies and holistic insights need to be integrated.

Improvement of Initial Weight Dependency of the Neural Network Model for Determination of Preconsolidation Pressure from Piezocone Test Result (피에조콘을 이용한 선행압밀하중 결정 신경망 모델의 초기 연결강도 의존성 개선)

  • Park, Sol-Ji;Joo, No-Ah;Park, Hyun-Il;Kim, Young-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.456-463
    • /
    • 2009
  • The preconsolidation pressure has been commonly determined by oedometer test. However, it can also be determined by in-situ test, such as piezocone test with theoretical and(or) empirical correlations. Recently, Neural Network(NN) theory was applied and some models were proposed to estimate the preconsolidation pressure or OCR. However, since the optimization process of synaptic weights of NN model is dependent on the initial synaptic weights, NN models which are trained with different initial weights can't avoid the variability on prediction result for new database even though they have same structure and use same transfer function. In this study, Committee Neural Network(CNN) model is proposed to improve the initial weight dependency of multi-layered neural network model on the prediction of preconsolidation pressure of soft clay from piezocone test result. It was found that even though the NN model has the optimized structure for given training data set, it still has the initial weight dependency, while the proposed CNN model can improve the initial weight dependency of the NN model and provide a consistent and precise inference result than existing NN models.

  • PDF

Application of Contract Net Protocol to the Design and Simulation of Network Security Model (계약망 프로토콜을 적용한 네트워크 보안 모델의 설계와 시뮬레이션)

  • 서경진;조대호
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.4
    • /
    • pp.25-40
    • /
    • 2003
  • With the growing usage of the networks, the world-wide Internet has become the main means to exchange data and carry out transactions. It has also become the main means to attack hosts. To solve the security problems which occur in the network such as Internet, we import software products of network security elements like an IDS (Intrusion Detection System) and a firewall. In this paper, we have designed and constructed the general simulation environment of network security model composed of multiple IDSes and a firewall which coordinate by CNP (Contract Net Protocol) for the effective detection of the intrusion. The CNP, the methodology for efficient integration of computer systems on heterogeneous environment such as distributed systems, is essentially a collection of agents, which cooperate to resolve a problem. Command console in the CNP is a manager who controls the execution of agents or a contractee, who performs intrusion detection. In the network security model, each model of simulation environment is hierarchically designed by DEVS(Discrete Event system Specification) formalism. The purpose of this simulation is that the application of rete pattern-matching algorithm speeds up the inference cycle phases of the intrusion detection expert system and we evaluate the characteristics and performance of CNP architecture with rete pattern-matching algorithm.

  • PDF

Application of Contract Net Protocol to the Design and Simulation of Network Security Model

  • Suh, Kyong-jin;Cho, Tae-ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.197-206
    • /
    • 2003
  • With the growing usage of the networks, the world-wide Internet has become the main means to exchange data and carry out transactions. It has also become the main means to attack hosts. To solve the security problems which occur in the network such as Internet, we import software products of network security elements like an IDS (Intrusion Detection System) and a firewall. In this paper, we have designed and constructed the General Simulation Environment of Network Security model composed of multiple IDSes and a firewall which coordinate by CNP (Contract Net Protocol) for the effective detection of the intrusion. The CNP, the methodology for efficient integration of computer systems on heterogeneous environment such as distributed systems, is essentially a collection of agents, which cooperate to resolve a problem. Command console in the CNP is a manager who controls tie execution of agents or a contractee, who performs intrusion detection. In the Network Security model, each model of simulation environment is hierarchically designed by DEVS (Discrete EVent system Specification) formalism. The purpose of this simulation is to evaluate the characteristics and performance of CNP architecture with rete pattern matching algorithm and the application of rete pattern matching algorithm for the speeding up the inference cycle phases of the intrusion detection expert system.

  • PDF

User Adaptive Restaurant Recommendation Service in Mobile Environment based on Bayesian Network Learning (베이지안 네트워크의 학습에 기반한 모바일 환경에서의 사용자 적응형 음식점 추천 서비스)

  • Kim, Hee-Taek;Cho, Sung-Bae
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.6-10
    • /
    • 2009
  • In these days, recommendation service in mobile environments is in the limelight due to the spread of mobile devices and an increase of information owing to advancement of computer network. The restaurant recommendation system reflecting user preference was proposed. This system uses Bayesian network to model user preference and analytical hierarchical process to recommend restaurants, but static inference model for user preference used in the system has some limitations that cannot manage changing user preference and enormous user survey must be preceded. This paper proposes a learning method for Bayesian network based on user requests. The proposed method is implemented on mobile devices and desktop, and we show the possibility of the proposed method through experiments.

  • PDF

Daily Peak Electric Load Forecasting Using Neural Network and Fuzzy System (신경망과 퍼지시스템을 이용한 일별 최대전력부하 예측)

  • Bang, Young-Keun;Kim, Jae-Hyoun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.96-102
    • /
    • 2018
  • For efficient operating strategy of electric power system, forecasting of daily peak electric load is an important but difficult problem. Therefore a daily peak electric load forecasting system using a neural network and fuzzy system is presented in this paper. First, original peak load data is interpolated in order to overcome the shortage of data for effective prediction. Next, the prediction of peak load using these interpolated data as input is performed in parallel by a neural network predictor and a fuzzy predictor. The neural network predictor shows better performance at drastic change of peak load, while the fuzzy predictor yields better prediction results in gradual changes. Finally, the superior one of two predictors is selected by the rules based on rough sets at every prediction time. To verify the effectiveness of the proposed method, the computer simulation is performed on peak load data in 2015 provided by KPX.

A study on the Robust and Systolic Topology for the Resilient Dynamic Multicasting Routing Protocol

  • Lee, Kang-Whan;Kim, Sung-Uk
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.255-260
    • /
    • 2008
  • In the recently years, there has been a big interest in ad hoc wireless network as they have tremendous military and commercial potential. An Ad hoc wireless network is composed of mobile computing devices that use having no fixed infrastructure of a multi-hop wireless network formed. So, the fact that limited resource could support the network of robust, simple framework and energy conserving etc. In this paper, we propose a new ad hoc multicast routing protocol for based on the ontology scheme called inference network. Ontology knowledge-based is one of the structure of context-aware. And the ontology clustering adopts a tree structure to enhance resilient against mobility and routing complexity. This proposed multicast routing protocol utilizes node locality to be improve the flexible connectivity and stable mobility on local discovery routing and flooding discovery routing. Also attempts to improve route recovery efficiency and reduce data transmissions of context-awareness. We also provide simulation results to validate the model complexity. We have developed that proposed an algorithm have design multi-hierarchy layered networks to simulate a desired system.

Sub-Frame Analysis-based Object Detection for Real-Time Video Surveillance

  • Jang, Bum-Suk;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.76-85
    • /
    • 2019
  • We introduce a vision-based object detection method for real-time video surveillance system in low-end edge computing environments. Recently, the accuracy of object detection has been improved due to the performance of approaches based on deep learning algorithm such as Region Convolutional Neural Network(R-CNN) which has two stage for inferencing. On the other hand, one stage detection algorithms such as single-shot detection (SSD) and you only look once (YOLO) have been developed at the expense of some accuracy and can be used for real-time systems. However, high-performance hardware such as General-Purpose computing on Graphics Processing Unit(GPGPU) is required to still achieve excellent object detection performance and speed. To address hardware requirement that is burdensome to low-end edge computing environments, We propose sub-frame analysis method for the object detection. In specific, We divide a whole image frame into smaller ones then inference them on Convolutional Neural Network (CNN) based image detection network, which is much faster than conventional network designed forfull frame image. We reduced its computationalrequirementsignificantly without losing throughput and object detection accuracy with the proposed method.

TANFIS Classifier Integrated Efficacious Aassistance System for Heart Disease Prediction using CNN-MDRP

  • Bhaskaru, O.;Sreedevi, M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.171-176
    • /
    • 2022
  • A dramatic rise in the number of people dying from heart disease has prompted efforts to find a way to identify it sooner using efficient approaches. A variety of variables contribute to the condition and even hereditary factors. The current estimate approaches use an automated diagnostic system that fails to attain a high level of accuracy because it includes irrelevant dataset information. This paper presents an effective neural network with convolutional layers for classifying clinical data that is highly class-imbalanced. Traditional approaches rely on massive amounts of data rather than precise predictions. Data must be picked carefully in order to achieve an earlier prediction process. It's a setback for analysis if the data obtained is just partially complete. However, feature extraction is a major challenge in classification and prediction since increased data increases the training time of traditional machine learning classifiers. The work integrates the CNN-MDRP classifier (convolutional neural network (CNN)-based efficient multimodal disease risk prediction with TANFIS (tuned adaptive neuro-fuzzy inference system) for earlier accurate prediction. Perform data cleaning by transforming partial data to informative data from the dataset in this project. The recommended TANFIS tuning parameters are then improved using a Laplace Gaussian mutation-based grasshopper and moth flame optimization approach (LGM2G). The proposed approach yields a prediction accuracy of 98.40 percent when compared to current algorithms.