• Title/Summary/Keyword: Inference models

Search Result 449, Processing Time 0.029 seconds

A Solution to Privacy Preservation in Publishing Human Trajectories

  • Li, Xianming;Sun, Guangzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3328-3349
    • /
    • 2020
  • With rapid development of ubiquitous computing and location-based services (LBSs), human trajectory data and associated activities are increasingly easily recorded. Inappropriately publishing trajectory data may leak users' privacy. Therefore, we study publishing trajectory data while preserving privacy, denoted privacy-preserving activity trajectories publishing (PPATP). We propose S-PPATP to solve this problem. S-PPATP comprises three steps: modeling, algorithm design and algorithm adjustment. During modeling, two user models describe users' behaviors: one based on a Markov chain and the other based on the hidden Markov model. We assume a potential adversary who intends to infer users' privacy, defined as a set of sensitive information. An adversary model is then proposed to define the adversary's background knowledge and inference method. Additionally, privacy requirements and a data quality metric are defined for assessment. During algorithm design, we propose two publishing algorithms corresponding to the user models and prove that both algorithms satisfy the privacy requirement. Then, we perform a comparative analysis on utility, efficiency and speedup techniques. Finally, we evaluate our algorithms through experiments on several datasets. The experiment results verify that our proposed algorithms preserve users' privay. We also test utility and discuss the privacy-utility tradeoff that real-world data publishers may face.

Compressive strength estimation of concrete containing zeolite and diatomite: An expert system implementation

  • Ozcan, Giyasettin;Kocak, Yilmaz;Gulbandilar, Eyyup
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.21-30
    • /
    • 2018
  • In this study, we analyze the behavior of concrete which contains zeolite and diatomite. In order to achieve the goal, we utilize expert system methods. The utilized methods are artificial neural network and adaptive network-based fuzzy inference systems. In this respect, we exploit seven different mixes of concrete. The concrete mixes contain zeolite, diatomite, mixture of zeolite and diatomite. All seven concrete mixes are exposed to 28, 56 and 90 days' compressive strength experiments with 63 specimens. The results of the compressive strength experiments are used as input data during the training and testing of expert system methods. In terms of artificial neural network and adaptive network-based fuzzy models, data format comprises seven input parameters, which are; the age of samples (days), amount of Portland cement, zeolite, diatomite, aggregate, water and hyper plasticizer. On the other hand, the output parameter is defined as the compressive strength of concrete. In the models, training and testing results have concluded that both expert system model yield thrilling medium to predict the compressive strength of concrete containing zeolite and diatomite.

A maximum likelihood approach to infer demographic models

  • Chung, Yujin
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.3
    • /
    • pp.385-395
    • /
    • 2020
  • We present a new maximum likelihood approach to estimate demographic history using genomic data sampled from two populations. A demographic model such as an isolation-with-migration (IM) model explains the genetic divergence of two populations split away from their common ancestral population. The standard probability model for an IM model contains a latent variable called genealogy that represents gene-specific evolutionary paths and links the genetic data to the IM model. Under an IM model, a genealogy consists of two kinds of evolutionary paths of genetic data: vertical inheritance paths (coalescent events) through generations and horizontal paths (migration events) between populations. The computational complexity of the IM model inference is one of the major limitations to analyze genomic data. We propose a fast maximum likelihood approach to estimate IM models from genomic data. The first step analyzes genomic data and maximizes the likelihood of a coalescent tree that contains vertical paths of genealogy. The second step analyzes the estimated coalescent trees and finds the parameter values of an IM model, which maximizes the distribution of the coalescent trees after taking account of possible migration events. We evaluate the performance of the new method by analyses of simulated data and genomic data from two subspecies of common chimpanzees in Africa.

Bayesian demand model based seismic vulnerability assessment of a concrete girder bridge

  • Bayat, M.;Kia, M.;Soltangharaei, V.;Ahmadi, H.R.;Ziehl, P.
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.337-343
    • /
    • 2020
  • In the present study, by employing fragility analysis, the seismic vulnerability of a concrete girder bridge, one of the most common existing structural bridge systems, has been performed. To this end, drift demand model as a fundamental ingredient of any probabilistic decision-making analyses is initially developed in terms of the two most common intensity measures, i.e., PGA and Sa (T1). Developing a probabilistic demand model requires a reliable database that is established in this paper by performing incremental dynamic analysis (IDA) under a set of 20 ground motion records. Next, by employing Bayesian statistical inference drift demand models are developed based on pre-collapse data obtained from IDA. Then, the accuracy and reasonability of the developed models are investigated by plotting diagnosis graphs. This graphical analysis demonstrates probabilistic demand model developed in terms of PGA is more reliable. Afterward, fragility curves according to PGA based-demand model are developed.

A STUDY OF USING CKKS HOMOMORPHIC ENCRYPTION OVER THE LAYERS OF A CONVOLUTIONAL NEURAL NETWORK MODEL

  • Castaneda, Sebastian Soler;Nam, Kevin;Joo, Youyeon;Paek, Yunheung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.161-164
    • /
    • 2022
  • Homomorphic Encryption (HE) schemes have been recently growing as a reliable solution to preserve users' information owe to maintaining and operating the user data in the encrypted state. In addition to that, several Neural Networks models merged with HE schemes have been developed as a prospective tool for privacy-preserving machine learning. Those mentioned works demonstrated that it is possible to match the accuracy of non-encrypted models but there is always a trade-off in the computation time. In this work, we evaluate the implementation of CKKS HE scheme operations over the layers of a LeNet5 convolutional inference model, however, owing to the limitations of the evaluation environment, the scope of this work is not to develop a complete LeNet5 encrypted model. The evaluation was performed using the MNIST dataset with Microsoft SEAL (MSEAL) open-source homomorphic encryption library ported version on Python (PyFhel). The behavior of the encrypted model, the limitations faced and a small description of related and future work is also provided.

Context-aware Framework and Applications for Improving UI and UX of Smartphones (스마트폰의 UI/UX 향상을 위한 상황인식 프레임워크 개발 및 응용)

  • Shin, Choonsung;Park, Byoung-Ha;Jung, Kwang-Mo
    • Journal of Information Technology Services
    • /
    • v.13 no.1
    • /
    • pp.197-207
    • /
    • 2014
  • With the recent advance in smartphones, users are allowed to use mobile applications anytime anywhere, and change their way to interact with smart environment and people. As a result, the need for developing context-aware applications on smartphones has a great attention from users and developers. This paper proposes a context-aware framework for supporting UI/UX of smartphones. The proposed framework collects a wide range of sensory data from smartphones and allows developers to analyze and model context models for their desired apps. In addition, it also supports real-time inference within the apps to make them to adapt to context. In order to show effectiveness of the proposed framework, we introduce two smartphone apps: context-aware home screen and automatic detection of smartphone problem use. Therefore, we expect that the proposed framework will help developers easily implement their apps with respect to context-awareness.

APPLICATION OF GENETIC-BASED FUZZY INFERENCE TO FUZZY CONTROL

  • Park, Daihee;Kandel, Abraham;Langholz, Gideon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.3-33
    • /
    • 1992
  • The successful application of fuzzy reasoning models to fuzzy control systems depends on a number of parameters, such as fuzzy membership functions, that are usually decided upon subjectively. It is shown ill this paper that the performance of fuzzy control systems call be improved if the fuzzy reasoning model is supplemented by a genetic-based learning mechanism. The genetic algorithm enables us to generate all optimal set of parameters for the fuzzy reasoning model based either on their initial subjective selection or on a random selection. It is shown that if knowledge of the domain is available, it is exploited by the genetic algorithm leading to an even better performance of the fuzzy controller.

  • PDF

Adaptive Bayesian Object Tracking with Histograms of Dense Local Image Descriptors

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.104-110
    • /
    • 2016
  • Dense local image descriptors like SIFT are fruitful for capturing salient information about image, shown to be successful in various image-related tasks when formed in bag-of-words representation (i.e., histograms). In this paper we consider to utilize these dense local descriptors in the object tracking problem. A notable aspect of our tracker is that instead of adopting a point estimate for the target model, we account for uncertainty in data noise and model incompleteness by maintaining a distribution over plausible candidate models within the Bayesian framework. The target model is also updated adaptively by the principled Bayesian posterior inference, which admits a closed form within our Dirichlet prior modeling. With empirical evaluations on some video datasets, the proposed method is shown to yield more accurate tracking than baseline histogram-based trackers with the same types of features, often being superior to the appearance-based (visual) trackers.

Development of a Fault-tolerant Intelligent Monitoring and Control System in Machining (절삭공정에서 Fault-tolerance 기능을 갖는 지능형 감시 및 제어시스템의 개발)

  • Choi, Gi-Heung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.470-476
    • /
    • 1997
  • The dynamic characteristics of industrial processes frequently cause an abnormal situation which is undesirable in terms of the productivity and the safety of workers. The goal of fault-tolerance is to continue performing certain activities even after the failure of some system cononents. A fault-tolerant intelligent monitoring and control system which is robust under disturbances is proposed in this paper. Specifically, the fault-tolerant monitoring scheme proposed consists of two process models and the inference module to preserve such a robustness. The results of turning experiments demonstrate the effectiveness of the fault-tolerant scheme in the presence of built-up edge.

A Bayesian Inference for Power Law Process with a Single Change Point

  • Kim, Kiwoong;Inkwon Yeo;Sinsup Cho;Kim, Jae-Joo
    • International Journal of Quality Innovation
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • The nonhomogeneous poisson process (NHPP) is often used to model repairable systems that are subject to a minimal repair strategy, with negligible repair times. In this situation, the system can be characterized by its intensity function. There have been many NHPP models according to intensity functions. However, the intensity function of system in use can be changed because of repair or its aging. We consider the single change point model as the modification of the power law process. The shape parameter of its intensity function is changed before and after the change point. We detect the presence of the change point using Bayesian methodology. Some numerical results are also presented.