Abstract
The nonhomogeneous poisson process (NHPP) is often used to model repairable systems that are subject to a minimal repair strategy, with negligible repair times. In this situation, the system can be characterized by its intensity function. There have been many NHPP models according to intensity functions. However, the intensity function of system in use can be changed because of repair or its aging. We consider the single change point model as the modification of the power law process. The shape parameter of its intensity function is changed before and after the change point. We detect the presence of the change point using Bayesian methodology. Some numerical results are also presented.