• Title/Summary/Keyword: Inference models

Search Result 449, Processing Time 0.029 seconds

Negative Binomial Varying Coefficient Partially Linear Models

  • Kim, Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.809-817
    • /
    • 2012
  • We propose a semiparametric inference for a generalized varying coefficient partially linear model(VCPLM) for negative binomial data. The VCPLM is useful to model real data in that varying coefficients are a special type of interaction between explanatory variables and partially linear models fit both parametric and nonparametric terms. The negative binomial distribution often arise in modelling count data which usually are overdispersed. The varying coefficient function estimators and regression parameters in generalized VCPLM are obtained by formulating a penalized likelihood through smoothing splines for negative binomial data when the shape parameter is known. The performance of the proposed method is then evaluated by simulations.

A Study on the Development of Knowldege-based Computer Aided Manufacturing System for Mold Manufacturing(1) -On the modelling of feature based model and database processing with knowledge- (금형 가공용 지식기반 CAM 시스템의 개발에 관한연구 (1) -특징 형상 모델링 및 짓기 베이스화에 관하여 -)

  • 정재현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.622-629
    • /
    • 1999
  • This paper presents the development of an interactive knowledge-based CAM system for design-ing and manufacturing the mold. The system is composed of two functional parts. One is the geo-metric modeller that uses the feature-based models. The models include base plate step, hole, pocket, boss and slot, These are designed by interactive user interface. The other is the expert sys-tem module with inference engine and knowledge database of workpiece material tools manufac-turing machines process an working conditions. With two parts the final mold shape is generated with manufacturing information for effective production.

  • PDF

Voltage Sag and Swell Estimation Using ANFIS for Power System Applications

  • Malmurugan, N.;Gopal, Devarajan;Lho, Young Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.4
    • /
    • pp.272-277
    • /
    • 2013
  • Power quality is a term that is now extensively used in power systems applications, and in this context the voltage, current, and phase angle are discussed widely. In particular, different algorithms that are capable of detecting the voltage sag and swell information in a real time environment have been proposed and developed. Voltage sag and swell play an important role in determining the stability, quality, and operation of a power system. This paper presents ANFIS (Adaptive Network based Fuzzy Inference System) models with different membership functions to build the voltage shape with the knowledge of known system parameters, and detect voltage sag and swell accurately. The performance of each method has been compared with each other/other methods to determine the effectiveness of the different models, and the results are presented.

The Improvement of the transient Response Using the Switching Property of Multiple Control Systems. (다중 제어 시스템의 스위칭 특성을 이용한 과도 응답 개선)

  • Rhee, H.C.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1100-1103
    • /
    • 1996
  • A well-known problem in adaptive control is the poor transient response which is observed when adaptation is initiated. This paper proposes a useful method to improve the transient response of adaptive control systems by using multiple models of the plant and switching mechanism by fuzzy inference. The models are identical except for initial estimates of the unknown plant parameteres. The control input to be applied is determined at every instant by the model which best approximates the plant. Simulation results are presented to indicate the performance improvement of adaptive control systems using the proposed method.

  • PDF

A spatial heterogeneity mixed model with skew-elliptical distributions

  • Farzammehr, Mohadeseh Alsadat;McLachlan, Geoffrey J.
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.373-391
    • /
    • 2022
  • The distribution of observations in most econometric studies with spatial heterogeneity is skewed. Usually, a single transformation of the data is used to approximate normality and to model the transformed data with a normal assumption. This assumption is however not always appropriate due to the fact that panel data often exhibit non-normal characteristics. In this work, the normality assumption is relaxed in spatial mixed models, allowing for spatial heterogeneity. An inference procedure based on Bayesian mixed modeling is carried out with a multivariate skew-elliptical distribution, which includes the skew-t, skew-normal, student-t, and normal distributions as special cases. The methodology is illustrated through a simulation study and according to the empirical literature, we fit our models to non-life insurance consumption observed between 1998 and 2002 across a spatial panel of 103 Italian provinces in order to determine its determinants. Analyzing the posterior distribution of some parameters and comparing various model comparison criteria indicate the proposed model to be superior to conventional ones.

ELCIC: An R package for model selection using the empirical-likelihood based information criterion

  • Chixiang Chen;Biyi Shen;Ming Wang
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.4
    • /
    • pp.355-368
    • /
    • 2023
  • This article introduces the R package ELCIC (https://cran.r-project.org/web/packages/ELCIC/index.html), which provides an empirical likelihood-based information criterion (ELCIC) for model selection that includes, but is not limited to, variable selection. The empirical likelihood is a semi-parametric approach to draw statistical inference that does not require distribution assumptions for data generation. Therefore, ELCIC is more robust and versatile in the context of model selection compared to the currently existing information criteria. This paper illustrates several applications of ELCIC, including its use in generalized linear models, generalized estimating equations (GEE) for longitudinal data, and weighted GEE (WGEE) for missing longitudinal data under the mechanisms of missing at random and dropout.

Estimation of the joint conditional distribution for repeatedly measured bivariate cholesterol data using nonparametric copula (비모수적 코플라를 이용한 반복측정 이변량 자료의 조건부 결합 분포 추정)

  • Kwak, Minjung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.689-700
    • /
    • 2016
  • We study estimation and inference of the joint conditional distributions of bivariate longitudinal outcomes using regression models and copulas. For the estimation of marginal models we consider a class of time-varying transformation models and combine the two marginal models using nonparametric empirical copulas. Regression parameters in the transformation model can be obtained as the solution of estimating equations and our models and estimation method can be applied in many situations where the conditional mean-based models are not good enough. Nonparametric copulas combined with time-varying transformation models may allow quite flexible modeling for the joint conditional distributions for bivariate longitudinal data. We apply our method to an epidemiological study of repeatedly measured bivariate cholesterol data.

The Bayesian Analysis for Software Reliability Models Based on NHPP (비동질적 포아송과정을 사용한 소프트웨어 신뢰 성장모형에 대한 베이지안 신뢰성 분석에 관한 연구)

  • Lee, Sang-Sik;Kim, Hee-Cheul;Kim, Yong-Jae
    • The KIPS Transactions:PartD
    • /
    • v.10D no.5
    • /
    • pp.805-812
    • /
    • 2003
  • This paper presents a stochastic model for the software failure phenomenon based on a nonhomogeneous Poisson process (NHPP) and performs Bayesian inference using prior information. The failure process is analyzed to develop a suitable mean value function for the NHPP; expressions are given for several performance measure. The parametric inferences of the model using Logarithmic Poisson model, Crow model and Rayleigh model is discussed. Bayesian computation and model selection using the sum of squared errors. The numerical results of this models are applied to real software failure data. Tools of parameter inference was used method of Gibbs sampling and Metropolis algorithm. The numerical example by T1 data (Musa) was illustrated.

An Approach to Survey Data with Nonresponse: Evaluation of KEPEC Data with BMI (무응답이 있는 설문조사연구의 접근법 : 한국노인약물역학코호트 자료의 평가)

  • Baek, Ji-Eun;Kang, Wee-Chang;Lee, Young-Jo;Park, Byung-Joo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.35 no.2
    • /
    • pp.136-140
    • /
    • 2002
  • Objectives : A common problem with analyzing survey data involves incomplete data with either a nonresponse or missing data. The mail questionnaire survey conducted for collecting lifestyle variables on the members of the Korean Elderly Phamacoepidemiologic Cohort(KEPEC) in 1996 contains some nonresponse or missing data. The proper statistical method was applied to evaluate the missing pattern of a specific KEPEC data, which had no missing data in the independent variable and missing data in the response variable, BMI. Methods : The number of study subjects was 8,689 elderly people. Initially, the BMI and significant variables that influenced the BMI were categorized. After fitting the log-linear model, the probabilities of the people on each category were estimated. The EM algorithm was implemented using a log-linear model to determine the missing mechanism causing the nonresponse. Results : Age, smoking status, and a preference of spicy hot food were chosen as variables that influenced the BMI. As a result of fitting the nonignorable and ignorable nonresponse log-linear model considering these variables, the difference in the deviance in these two models was 0.0034(df=1). Conclusion : There is a lot of risk if an inference regarding the variables and large samples is made without considering the pattern of missing data. On the basis of these results, the missing data occurring in the BMI is the ignorable nonresponse. Therefore, when analyzing the BMI in KEPEC data, the inference can be made about the data without considering the missing data.

Mask Wearing Detection System using Deep Learning (딥러닝을 이용한 마스크 착용 여부 검사 시스템)

  • Nam, Chung-hyeon;Nam, Eun-jeong;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.44-49
    • /
    • 2021
  • Recently, due to COVID-19, studies have been popularly worked to apply neural network to mask wearing automatic detection system. For applying neural networks, the 1-stage detection or 2-stage detection methods are used, and if data are not sufficiently collected, the pretrained neural network models are studied by applying fine-tuning techniques. In this paper, the system is consisted of 2-stage detection method that contain MTCNN model for face recognition and ResNet model for mask detection. The mask detector was experimented by applying five ResNet models to improve accuracy and fps in various environments. Training data used 17,217 images that collected using web crawler, and for inference, we used 1,913 images and two one-minute videos respectively. The experiment showed a high accuracy of 96.39% for images and 92.98% for video, and the speed of inference for video was 10.78fps.