• Title/Summary/Keyword: Inference function

Search Result 450, Processing Time 0.023 seconds

Application of a Fuzzy Controller with a Self-Learning Structure (자기 학습 구조를 가진 퍼지 제어기의 응용)

  • 서영노;장진현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.6
    • /
    • pp.1182-1189
    • /
    • 1994
  • In this paper, we evaluate the performance of a fuzzy controller with a self-learning structure. The fuzzy controller is based on a fuzzy logic that approximates and effectively represents the uncertain phenomena of the real world. The fuzzy controller has control of a plant with a fuzzy inference logic. However, it is not easy to decide the membership function of a fuzzy controller and its controlrule. This problem can be solved by designing a self-learning controller that improves its own contropllaw to its goal with a performance table. The fuzzy controller is implemented with a 386PC, an interface board, a D/A converter, a PWM(Pulse Width Modulation) motor drive-circuit, and a sensing circuit, for error and differential of error. Since a Ball and Beam System is used in the experiment, the validity of the fuzzy controller with the self-learning structure can be evaluated through the actual experiment and the computer simulation of the real plant. The self-learning fuzzy controller reduces settling time by just under 10%.

  • PDF

An Application of Dirichlet Mixture Model for Failure Time Density Estimation to Components of Naval Combat System (디리슈레 혼합모형을 이용한 함정 전투체계 부품의 고장시간 분포 추정)

  • Lee, Jinwhan;Kim, Jung Hun;Jung, BongJoo;Kim, Kyeongtaek
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.194-202
    • /
    • 2019
  • Reliability analysis of the components frequently starts with the data that manufacturer provides. If enough failure data are collected from the field operations, the reliability should be recomputed and updated on the basis of the field failure data. However, when the failure time record for a component contains only a few observations, all statistical methodologies are limited. In this case, where the failure records for multiple number of identical components are available, a valid alternative is combining all the data from each component into one data set with enough sample size and utilizing the useful information in the censored data. The ROK Navy has been operating multiple Patrol Killer Guided missiles (PKGs) for several years. The Korea Multi-Function Control Console (KMFCC) is one of key components in PKG combat system. The maintenance record for the KMFCC contains less than ten failure observations and a censored datum. This paper proposes a Bayesian approach with a Dirichlet mixture model to estimate failure time density for KMFCC. Trends test for each component record indicated that null hypothesis, that failure occurrence is renewal process, is not rejected. Since the KMFCCs have been functioning under different operating environment, the failure time distribution may be a composition of a number of unknown distributions, i.e. a mixture distribution, rather than a single distribution. The Dirichlet mixture model was coded as probabilistic programming in Python using PyMC3. Then Markov Chain Monte Carlo (MCMC) sampling technique employed in PyMC3 probabilistically estimated the parameters' posterior distribution through the Dirichlet mixture model. The simulation results revealed that the mixture models provide superior fits to the combined data set over single models.

Design of Optimized pRBFNNs-based Night Vision Face Recognition System Using PCA Algorithm (PCA알고리즘을 이용한 최적 pRBFNNs 기반 나이트비전 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Jang, Byoung-Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.225-231
    • /
    • 2013
  • In this study, we propose the design of optimized pRBFNNs-based night vision face recognition system using PCA algorithm. It is difficalt to obtain images using CCD camera due to low brightness under surround condition without lighting. The quality of the images distorted by low illuminance is improved by using night vision camera and histogram equalization. Ada-Boost algorithm also is used for the detection of face image between face and non-face image area. The dimension of the obtained image data is reduced to low dimension using PCA method. Also we introduce the pRBFNNs as recognition module. The proposed pRBFNNs consists of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned by using Fuzzy C-Means clustering. In the conclusion part of rules, the connection weights of pRBFNNs is represented as three kinds of polynomials such as linear, quadratic, and modified quadratic. The essential design parameters of the networks are optimized by means of Differential Evolution.

Real-Time Bus Reconfiguration Strategy for the Fault Restoration of Main Transformer Based on Pattern Recognition Method (자동화된 변전소의 주변압기 사고복구를 위한 패턴인식기법에 기반한 실시간 모선재구성 전략 개발)

  • Ko Yun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.11
    • /
    • pp.596-603
    • /
    • 2004
  • This paper proposes an expert system based on the pattern recognition method which can enhance the accuracy and effectiveness of real-time bus reconfiguration strategy for the transfer of faulted load when a main transformer fault occurs in the automated substation. The minimum distance classification method is adopted as the pattern recognition method of expert system. The training pattern set is designed MTr by MTr to minimize the searching time for target load pattern which is similar to the real-time load pattern. But the control pattern set, which is required to determine the corresponding bus reconfiguration strategy to these trained load pattern set is designed as one table by considering the efficiency of knowledge base design because its size is small. The training load pattern generator based on load level and the training load pattern generator based on load profile are designed, which are can reduce the size of each training pattern set from max L/sup (m+f)/ to the size of effective level. Here, L is the number of load level, m and f are the number of main transformers and the number of feeders. The one reduces the number of trained load pattern by setting the sawmiller patterns to a same pattern, the other reduces by considering only load pattern while the given period. And control pattern generator based on exhaustive search method with breadth-limit is designed, which generates the corresponding bus reconfiguration strategy to these trained load pattern set. The inference engine of the expert system and the substation database and knowledge base is implemented in MFC function of Visual C++ Finally, the performance and effectiveness of the proposed expert system is verified by comparing the best-first search solution and pattern recognition solution based on diversity event simulations for typical distribution substation.

Assessing Infinite Failure Software Reliability Model Using SPC (Statistical Process Control) (통계적 공정관리(SPC)를 이용한 무한고장 소프트웨어 신뢰성 모형에 대한 접근방법 연구)

  • Kim, Hee Cheul;Shin, Hyun Cheul
    • Convergence Security Journal
    • /
    • v.12 no.6
    • /
    • pp.85-92
    • /
    • 2012
  • There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. It is shown that it is possible to do asymptotic likelihood inference for software reliability models based on infinite failure model and non-homogeneous Poisson Processes (NHPP). For someone making a decision about when to market software, the conditional failure rate is an important variables. The finite failure model are used in a wide variety of practical situations. Their use in characterization problems, detection of outliers, linear estimation, study of system reliability, life-testing, survival analysis, data compression and many other fields can be seen from the many study. Statistical Process Control (SPC) can monitor the forecasting of software failure and there by contribute significantly to the improvement of software reliability. Control charts are widely used for software process control in the software industry. In this paper, we proposed a control mechanism based on NHPP using mean value function of log Poission, log-linear and Parto distribution.

A case study on the random coefficient model for diet experimental data (변량계수모형의 식이요법 실험자료에 관한 사례연구)

  • Jo, Jin-Nam;Baik, Jai-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.787-796
    • /
    • 2009
  • A random coefficient model is applied when times of the repeated measurements are not fixed in experiments with respect to the subjects. The procedures of the inference of a random coefficient model are same as those of a mixed model. Diet experimental data was used for applying the random coefficient model. Various random coefficient models are investigated for the experimental data, and are compared each other. Finally, optimal random coefficient model would be selected. It resulted from the analysis that for the fixed effect factor, the baseline, treatment, height, and time effect were very significant. The treatment effect of the diet foods and exercises were more effective in losing weight than the effect of the diet foods only. The fixed cubic time effect was very significant. The variance components corresponding to the subject effect, linear time effect, quadratic time effect, and cubic time effect of the random coefficients are all positive. When quartic time effect was added as random coefficients the model did not converge. Thus random coefficients up to the cubic terms was considered as the optimal model.

  • PDF

Application of Soft Computing Based Response Surface Techniques in Sizing of A-Pillar Trim with Rib Structures (승용차 A-Pillar Trim의 치수설계를 위한 소프트컴퓨팅기반 반응표면기법의 응용)

  • Kim, Seung-Jin;Kim, Hyeong-Gon;Lee, Jong-Su;Gang, Sin-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.537-547
    • /
    • 2001
  • The paper proposes the fuzzy logic global approximate optimization strategies in optimal sizing of automotive A-pillar trim with rib structures for occupant head protection. Two different strategies referred to as evolutionary fuzzy modeling (EFM) and neuro-fuzzy modeling (NFM) are implemented in the context of global approximate optimization. EFM and NFM are based on soft computing paradigms utilizing fuzzy systems, neural networks and evolutionary computing techniques. Such approximation methods may have their promising characteristics in a case where the inherent nonlinearity in analysis model should be accommodated over the entire design space and the training data is not sufficiently provided. The objective of structural design is to determine the dimensions of rib in A-pillar, minimizing the equivalent head injury criterion HIC(d). The paper describes the head-form modeling and head impact simulation using LS-DYNA3D, and the approximation procedures including fuzzy rule generation, membership function selection and inference process for EFM and NFM, and subsequently presents their generalization capabilities in terms of number of fuzzy rules and training data.

Fuzzy PD plus I Controller of a CSTR for Temperature Control

  • Lee, Joo-Yeon;So, Hye-Rim;Lee, Yun-Hyung;Oh, Sea-June;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.563-569
    • /
    • 2015
  • A chemical reaction occurring in CSTR (Continuous Stirred Tank Reactor) is significantly affected by the concentration, temperature, pressure, and reacting time of materials, and thus it has strong nonlinear and time-varying characteristics. Also, when an existing linear PID controller with fixed gain is used, the performance could deteriorate or could be unstable if the system parameters change due to the change in the operating point of CSTR. In this study, a technique for the design of a fuzzy PD plus I controller was proposed for the temperature control of a CSTR process. In the fuzzy PD plus I controller, a linear integral controller was added to a fuzzy PD controller in parallel, and the steady-state performance could be improved based on this. For the fuzzy membership function, a Gaussian type was used; for the fuzzy inference, the Max-Min method of Mamdani was used; and for the defuzzification, the center of gravity method was used. In addition, the saturation state of the actuator was also considered during controller design. The validity of the proposed method was examined by comparing the set-point tracking performance and the robustness to the parameter change with those of an adaptive controller and a nonlinear proportional-integral-differential controller.

Noise Reduction in Real-time Context Aware using Wearable Device (웨어러블 기기를 이용한 실시간 상황인식에서의 잡음제거)

  • Kim, Tae Ho;Suh, Dong Hyeok;Yoon, Shin Sook;Ryu, Keun Ho
    • Journal of Digital Contents Society
    • /
    • v.19 no.9
    • /
    • pp.1803-1810
    • /
    • 2018
  • Recently, many researches related to IoT (Internet of Things) have been actively conducted. In order to improve the context aware function of smart wearable devices using the IoT, we proposed a noise reduction method for the event data of the sensor part. In thisstudy, the adoption of the low - pass filter induces the attenuation of the abnormally measured value, and the benefit was obtained from the situation recognition using the event data of the sensor. As a result, we have validated attenuation for abnormal or excessive noise using event data detected and reported by 3-axis acceleration sensors on some devices, such as smartphones and smart watches. In addition, various pattern data necessary for real - time context aware were obtained through noise pattern analysis.

Vibration Diagnosis of Rotating Machinery Using Fuzzy Inference (퍼지추론을 이용한 회전기계의 정밀진단법)

  • 전순기;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.284-288
    • /
    • 1995
  • 최근 애매성이 수반되는 정보를 Zadeh는 멤버쉽함수(membership function)를 이용하여 새로운 정보처리 방식으로서 퍼지이론을 제안하였고, 그후 의료계에서도 퍼지이론을 도입한 진단법들이 제안되었다. 회전기계의 이상진단법으로는 주파수득점법(Point counting method), 퍼지역연산법(Inverse method of fuzzy theory)등이 보고되고 있으며, 저자들도 퍼지이론을 이용하여 구름베어링의 결함진단, 회전기계의 간이 이상진단법등을 보고하였다. 이들은 주로 진동주파수의 스펙트럼 데이터 만을 이용하고 있고, 다른 많은 데이터를 복합적으로 이용할 수 없다. 이 때문에 주로 소규모 문제의 간이진단에서는 효과적이나 진단대상이 복잡하고 대규모로 되면 보다 정확한 원인 추정이 곤란하게 된다. 또한 수치데이터만을 취급할 수 있으므로 진동전문가가 진단에 이용하는 각종의 수치화 될 수 없는 데이터(언어적인 정보)가 취급될 수 없다. 따라서 이들의 진단법은 개략적인 진단은 가능하나 상세한 원인까지는 진단할 수 없는 단점이 있다. 회전기계의 이상판단시 참고가 되는 각종 정보로는 주로 진동진폭의 크기, 진폭과 위상의 변화, 진폭의 변화, 진동파형, 진동벡터의 시간변화 등이 있고, 이들은 수치적으로 표현할 수 있는 계량데이터와 판단의 경계가 불명확한 언어정보(범위데이터)로 나눌 수 있다. 후자는 애매성(fuzziness)을 많이 포함하고 있으며, 엄밀히 측정되는 수치데이터에서도 퍼지성을 가지고 있다. 이러한 언어적인 정보의 애매성을 퍼지추론에서는 [수치적 진리치](numeric truth)와 [언어적 진리치](linguistic truth)의 개념으로 표현하게 되었다. 수치적 진리치는 확실함의 척도를 [0,1] 사이의 수치를 이용하여 표현하고 있으며, 이 수치는 소견의 확실도로서 가능성을 표현한 것이다. 예를 들면, 진동진폭 스펙트럼상에 2X 성분이 상당히 크게 나타나 정렬불량의 가능성이 0.7 정도라고 판정하는 것 등은 이러한 수치적진리치를 이용하는 방법이다. 그러나 상기의 수치적 표현만으로는 확실도를 한개의 수치로서 대표하게 하는 것은 진단의 정밀도에 문제가 있을 것으로 생각된다. 따라서 언어적진리치가 도입되어 [상당히 확실], [확실], [약간 확실] 등의 언어적인 표현을 이용하여 애매성을 표현하게 되었다. 본 논문에서는 간이진단 결과로부터 추출된 애매한 진단결과중에서 가장 가능성이 높은 이상원인을 복수로 선정하고, 여러 종류의 수치화할 수 없는 언어적(linguistic)인 정보ㄷㄹ을 if-then 형식의 퍼지추론으로 종합하는 회전기계의 이상진단을 위한 정밀진단 알고리즘을 제안하고 그 유용성을 검토한다.

  • PDF