본 논문에서는 마코프 이항 회귀 모형의 시차가 알려져 있거나 그렇지 않은 경우일 때, t-링크 함수를 갖는 종단적 마코프 이항 회귀 모형을 제시한다. 일반적으로, 이항 회귀 모형에서는 로직 모형이나 프로빗 모형이 주로 사용된다. t-링크 함수는 t 분포가 자유도가 커질수록 정규분포로 근사하기 때문에 프로빗 모형을 대신 더 많은 유연성을 위해 사용될 수 있다. 게다가 마코프 회귀모형은 종단 자료에 대해 사용될 수 있다. 우리는 마코프 회귀 모형의 시차를 결정하기 위해 베이지안 방법을 제시하고자 한다. 특히, 각 모델의 차수에 대해 알고 있는 경우에는 DIC를 기준으로 모델 비교를 실시하였다. 모델의 차수에 대해 모르는 경우에는 가능한 모델들의 사후 확률을 이용하였다. 복잡한 베이지안 계산을 해결하기 위하여 Albert와 Chib (1993), Kuo와 Mallick (1998)과 Erkanli 등 (2001)의 방법을 이용하여 모델을 재설정하였다. 제안하는 방법은 시뮬레이션 데이터와 Somer 등 (1984)에 의해 조사된 인도네시아 어린이 종단 데이터에 적용했다. 마코프 이항 회귀모형의 순서에 대해서 아는 경우와 모르는 경우를 각각 가정하여 최적의 모델을 알아보기 위해 MCMC 방법을 사용하였다. 또한, 매트로폴리스 해스팅 알고리즘의 수렴성을 점검하기 위해 Gelman과 Rubin의 진단을 이용했다.
문제해결을 위해 지식을 활용하는 사용자는 내용 면에서 관련된 또 다른 지식, 즉 연관지식에 대한 교차적이고 순차적인 탐색을 진행한다. 지식지도는 관리하는 지식의 현황을 보여주는 도식이자 지식저장소의 분류체계로서, 지식 간 연관성에 기반한 사용자의 지식 탐색을 지원하는 도구이다. 따라서 지식지도는 지식 간 연관성에 의한 네트워크 형식으로 표현되며, 이를 정의 및 추론하는 데에 최적화된 기술을 접목하여 구현되어야 한다. 이를 위해 본 연구는 관리하는 개체와 개체 간 관계를 표현 및 추론하는 데에 최적화된 기능성을 발휘하는 것으로 알려진 그래프DB를 이용하여 지식그래프 기반 지식지도를 개발하는 방법론을 제시한다. 제시된 방법론의 유효성을 확인하기 위하여, 선행 연구의 온톨로지 기반 지식지도 구축 사례 데이터를 그래프DB에 적용하여 지식그래프 기반 지식지도를 구현하고, 구현된 지식 네트워크의 유효성과 Class 자동 구성 능력을 선행 연구의 결과와 비교하는 성능 테스트를 진행한다. 성능 테스트 결과, 본 연구의 지식그래프 기반 지식지도는 선행 연구의 온톨로지 기반 지식지도와 동일한 수준의 성능을 나타냈으며, 지식 및 지식 간 관계 정의 및 추론을 더욱 효율적으로 진행할 수 있음을 확인하였다. 본 연구의 결과는 연관지식에 대한 사용자의 인지과정을 반영한 지식 탐색 기능의 구현에 활용될 수 있으며, 추론에 의한 새로운 연관지식의 발견을 통해 자율적으로 확장되는 지능적 지식베이스의 개발에 응용될 수 있다.
이 논문에서는 장기억 과정에서의 변화점을 빨리 검출하는 베이지안 추론방법에 대해 알아본다. 장기억 과정에서의 베이지안 추정은 장기억 모수값에 따라 전체 자료에 대한 부분차분을 계산해야 하기 때문에 수행시간이 많이 걸린다는 문제가 있다. 이 논문에서는 이러한 문제를 해결하고자 장기억 모수공간을 그룹화하여 순서형으로 범주화시킨 후 설명력이 가장 높은 범주의 대표값을 선택하게 하였다. 이 방법은 초기단계에서 범주의 대표값에 대해 한번씩만 부분차분을 계산하면 되기 때문에, 매번 계산해야 하는 추정하는 방법보다, 특히 시계열자료의 수가 많은 경우, 상대적으로 빠른 베인지안 추론이 가능하다. 또한 장기억 모수공간이 (0,0.5) 이기 때문에 모수공간을 적절하게 그룹화한다면 장기억 모수를 선택하는 것이 모수를 추정하는 것에 비해 큰 차이가 없다. 이 논문에서는 나일강 수위자료 실증분석을 통해 제안된 방법의 타당성을 확인해본다.
일상생활에서 활용 가능한 다양한 종류의 생체 신호 획득 및 분석 방법이 연구되고 있다. 기존의 생체 신호 분석 방법은 표준화된 임계치를 사용하여 해석한 결과를 제공하며 신호 측정 당시의 상황이 고려되지 않아 잡음 혹은 외부 환경의 영향을 받기 쉬운 단점이 있다. 본 논문에서는 생체 신호뿐만 아니라 기타 정황정보를 기반으로 하여 개인화된 신호를 분석하기 위한 모델(Personalized Decision Making method, PDM)을 제안한다. 개인화된 신호 해석 모델은 사용자의 맥락 정보, 사용자의 맥락 정보, 사용자의 나이, 성별, 현재의 몸 및 정신 상태, 음식 및 카페인의 섭취 여부, 측정 시간 및 측정 요일 등을 기반으로 각 맥락 간의 연관 관계를 나타내고, 이상적인 사용자의 생체 신호 예측치를 베이즈 정리를 기반으로 획득한다. 개인화된 해석 모델(ACM)을 통해 표준 임계치를 적용한 해석에 비해 인식의 정확도를 높일 수 있으며, 다양한 측정시의 조건을 알면 현재 사용자의 건강상태를 개인화된 분석과 유사한 정확도로 예측이 가능하다. 제안한 방법은 현재 관측된 관측치의 분포를 모르더라도, 현재 사용자의 상태를 맥락정보를 기반으로 하여 예측할 수 있으므로, 일반적인 데이터 모델을 기반으로 개개인에 맞는 얼굴 표정을 인식하는 연구 등에 활용이 가능하다.
본 연구의 목적은 적응신경망퍼지추론시스템(ANFIS)과 회귀분석을 활용하여 7가지 역학적 특성치를 갖는 면직물의 시각적 질감을 해석하고 두 가지 방법을 비교하는 것이다. AMFIS는 퍼지 소속 함수와 신경망 구조를 갖는 것으로 인간의 비선형적 감성예측에 유용한 도구이다. 상관관계 및 회귀 분석의 통계분석은 7가지 역학적 특성치가 주관적 질감과 선형의 관계가 있음을 나타내었지만 설명력이 높지 않았고, 선형 이외의 관련성과 변수들 간의 상호작용을 표현하기 어려운 문제가 있었다. 통계분석과 비교하여, ANFIS는 변수들 간의 비선형적인 관련성과 상호작용을 가시적으로 보여주는데 설명력 있는 유용한 도구였으나, 입력 변수 중 출력 변수에 영향력이 있는 변수를 변별하지 못하여, 생성된 규칙의 수가 복잡한 문제가 있었다. 따라서 ANFIS의 해석이 단순하고 의미있는 모델을 구성하기 위해서는 영향력 있는 출력 변수를 추출하고 나머지 변수를 유사하게 통제하는 실험 모델의 구성이 필요하다.
본 논문에서는 ATM 링크의 이용을 향상을 위해 ABR 서비스에서의 퍼지 트래픽 제어 방식을 제안한다. 제안된 방식은 ABR 서비스에서 전송률 제어 방식인 EPRCA를 개선한 것으로써 송신원의 전송률 제어값을 스위치단의 버퍼량과 버퍼 별화율로 퍼지 추론을 실시하여 얻는 방식이다. 본 논문에서는 ATM 트래픽 제어에 적용된 퍼지, 신경 망의 경우와 ATM의 ABR 서비스 제어 방식인 EPRCA 방식을 알아본 후, 퍼지 트래픽 제어 방식의 모형과 알고리즘, 퍼지 트래픽 제어기 등을 연계한다. 퍼지 트래픽 제어 기에서는 사용 소속함수, 퍼지 제어 규칙,max-min 추론 방법 등을 설계한다. 본 논문 에서 제안된 방식은 모의 실험을 통해 기존의 EPRCA 방식과 퍼지 트래픽 제어방식의 링크 이용율을 비교·분석함으로써 그 우수성을 검증한다. 모의 실험 결과 퍼지 트래 픽 제어 방식이 EPRCA 방식보다 송신원의 정규 분포 모델의 경우 2.3%, MMPP 모델의 경우 2.7%의 링크 이용률 개선을 얻었다.
유저의 일상 스케쥴을 제안하고 예측하는 서비스는 스마트 비서의 흥미로운 응용이다. 전통적인 방법에서는 유저의 행동을 예측하기 위하여, 유저가 직접 자신의 행동을 기록하거나, e-mail 혹은 SNS 등에서 명시적인 일정 정보를 추출하여 사용해왔다. 하지만, 유저가 모든 정보를 기록할 수 없기에, 스마트 비서가 얻을 수 있는 정보는 제한적이며, 유저는 유저의 일상의 routine한 정보를 기록하지 않는 경향이 있다. 본 논문에서는 스케줄러에 적히는 정형화된 일정인 스케줄과 비정형화된 일정을 만드는 일상 행동 패턴들을 동시에 고려하는 접근 방법을 제안한다. 이를 위하여 마코프 의사 결정 프로세스 (MDP)를 기반으로 하는 추론 방법과 역강화 학습 (IRL)을 통한 보상 함수 학습 방법을 제안한다. 실험 결과는 우리가 6주간 모은 실제 생활을 기록한 데이터 셋에서 우리의 방법이 기존 방법들보다 우수한 성능을 보임을 논증한다.
본 논문에서는 비동질 포아송 프로세스(NHPP)에 기초한 소프트웨어 에러 현상에 대한 확률 모형을 고려하였다. 고장 패턴은 NHPP에 대한 강도함수와 평균값 함수로서 나타낼 수 있다. 따라서 본 논문에서는 기존의 모형인 Goel 이 제시한 일반화모형[2]과 Yamada, Ohba-Osaki 모형[11]을 재조명하고 이러한 모형과 연관되고 신뢰도 분포로 많이 사용되는 와이블 분포의 특수형태인 레일리(Rayleigh)분포와 겜벨(Gumbel)분포[5]를 이용한 모형을 제시하고, 또 효율적 모형을 위한 모형선택으로서 편차자승합(SSE)을 이용하여 비교하였다. 모수의 추정을 위해서 최우추정법(MLE)과 일반적인 수치해석적 방법인 이분법을 이용하였다. 수치적인 예에서는 실측자료인 NTDS 자료[4]를 이용하여 모수 및 신뢰도를 추정하였고 편차자승합을 이용한 모형비교의 결과를 나열하였다.
사용현장에서의 고장데이터는 미리 정해진 보증기간동안 고장이 발생한 제품으로부터 얻어지는 고장시간, 고장원인, 설명변수값과 보증기간동안 고장나지 않는 제품 중 일정비율을 추적조사하여 얻은 설명변수 값들로 구성된다. 사용현장에서 얻어지는 이와 같은 데이터를 이용하여 제품수명분포의 모수가 설명변수와 대수선형관계일 때, 수명분포의 모수에 대한 의사(pseudo) 최우추정량을 구하고 그 점근성질을 규명하였으며, 고장원인별 제품수명이 와이블분포를 따를 때의 의사최우추정량과 점근분산을 구하였다. 제품의 보증기간이 달력시간이고 제품의 고장이 운영시간에 의존하는 경우와 제품의 보증이 달력시간과 운영시간의 혼합인 경우의 분석방법도 제시하였다. 또한 모의 실험을 통하여 추적조사비율에 따른 효과를 알아보았다.
IEEE 802.11a 무선 LAN에서 사용하는 임의 접근 방식은 CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)에 기반한 DCF(Distributed Coordination Function)방식이다. 그러나, IEEE 802.11는 지수적 백오프 방식을 사용하기 때문에, 충돌이 일어났을 경우 경쟁 윈도우의 크기가 2배로 커진다. 따라서, 패킷 전송 지연 시간이 증가하게 되어, 효율성이 떨어진다. 본 논문에서는 제안된 수정된 백오프 알고리즘 방식을 사용하여 IEEE 802.11 MAC DCF 프로토콜의 TCP 패킷 전송 시간을 분석하였다. 결과로부터, OFDM/QPSK 변조 방식의 패킷 전송에 있어 패킷 전송 시간을 줄이기 위해서 TCP 패킷 크기가 증가해야 한다는 것을 알 수 있었고, 실험 결과로부터 TCP 계층 안 TCP 패킷 크기와 전체 메시지 전송 시간 상관관계에서 TCP 계층의 적당한 패킷 크기를 구할 수가 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.