• 제목/요약/키워드: Inference function

검색결과 450건 처리시간 0.028초

퍼지 그래픽 시뮬레이터를 이용한 하수처리 시스템 활성오니공정의 최적화 (An optimization of activated sludge process in wastewater treatment system utilizing fuzzy graphic simulator)

  • 남의석;박종진;우광방
    • 제어로봇시스템학회논문지
    • /
    • 제3권2호
    • /
    • pp.204-213
    • /
    • 1997
  • In this paper, an application of fuzzy-neuron reasoning to the control of an activated sludge plant is presented. The activated sludge process is widely used in modern wastewater treatment plants. The operation control of the activated sludge process, however, is difficult due to the following reasons : 1)The complexity of the wastewater components, 2)the change of the wastewater influent, and 3)the adjustment errors in the control process. Because of these reasons, it is difficult to obtain mathematical model that really reflect the relationship between the variables and parameters in the process of wastewater treatment correctively and effectively. In this paper, the activated sludge process(A.S.P.) is modeled by a new fuzzy-neuron network representing nonlinear characteristics. These fuzzy-neurons have fuzzy rules with complementary membership function. Based on the constructed model, graphic simulator on X-window system as a graphic integrated environment is implemented. The efficacy of the proposed control scheme was evaluated and demonstrated by means of the field test.

  • PDF

Closed-form fragility analysis of the steel moment resisting frames

  • Kia, M.;Banazadeh, M.
    • Steel and Composite Structures
    • /
    • 제21권1호
    • /
    • pp.93-107
    • /
    • 2016
  • Seismic fragility analysis is a probabilistic decision-making framework which is widely implemented for evaluating vulnerability of a building under earthquake loading. It requires ingredient named probabilistic model and commonly developed using statistics requiring collecting data in large quantities. Preparation of such a data-base is often costly and time-consuming. Therefore, in this paper, by developing generic seismic drift demand model for regular-multi-story steel moment resisting frames is tried to present a novel application of the probabilistic decision-making analysis to practical purposes. To this end, a demand model which is a linear function of intensity measure in logarithmic space is developed to predict overall maximum inter-story drift. Next, the model is coupled with a set of regression-based equations which are capable of directly estimating unknown statistical characteristics of the model parameters.To explicitly address uncertainties arise from randomness and lack of knowledge, the Bayesian regression inference is employed, when these relations are developed. The developed demand model is then employed in a Seismic Fragility Analysis (SFA) for two designed building. The accuracy of the results is also assessed by comparison with the results directly obtained from Incremental Dynamic analysis.

Adaptive group of ink drop spread: a computer code to unfold neutron noise sources in reactor cores

  • Hosseini, Seyed Abolfazl;Afrakoti, Iman Esmaili Paeen
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1369-1378
    • /
    • 2017
  • The present paper reports the development of a computational code based on the Adaptive Group of Ink Drop Spread (AGIDS) for reconstruction of the neutron noise sources in reactor cores. AGIDS algorithm was developed as a fuzzy inference system based on the active learning method. The main idea of the active learning method is to break a multiple input-single output system into a single input-single output system. This leads to the ability to simulate a large system with high accuracy. In the present study, vibrating absorber-type neutron noise source in an International Atomic Energy Agency-two dimensional reactor core is considered in neutron noise calculation. The neutron noise distribution in the detectors was calculated using the Galerkin finite element method. Linear approximation of the shape function in each triangle element was used in the Galerkin finite element method. Both the real and imaginary parts of the calculated neutron distribution of the detectors were considered input data in the developed computational code based on AGIDS. The output of the computational code is the strength, frequency, and position (X and Y coordinates) of the neutron noise sources. The calculated fraction of variance unexplained error for output parameters including strength, frequency, and X and Y coordinates of the considered neutron noise sources were $0.002682{\sharp}/cm^3s$, 0.002682 Hz, and 0.004254 cm and 0.006140 cm, respectively.

Selecting Fuzzy Rules for Pattern Classification Systems

  • Lee, Sang-Bum;Lee, Sung-joo;Lee, Mai-Rey
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권2호
    • /
    • pp.159-165
    • /
    • 2002
  • This paper proposes a GA and Gradient Descent Method-based method for choosing an appropriate set of fuzzy rules for classification problems. The aim of the proposed method is to fond a minimum set of fuzzy rules that can correctly classify all training patterns. The number of inference rules and the shapes of the membership functions in the antecedent part of the fuzzy rules are determined by the genetic algorithms. The real numbers in the consequent parts of the fuzzy rules are obtained through the use of the descent method. A fitness function is used to maximize the number of correctly classified patterns, and to minimize the number of fuzzy rules. A solution obtained by the genetic algorithm is a set of fuzzy rules, and its fitness is determined by the two objectives, in a combinatorial optimization problem. In order to demonstrate the effectiveness of the proposed method, computer simulation results are shown.

두뇌 기능 구현을 위한 뇌 정보처리의 공학적 해석 (Scientific Analysis of Brain-Information processing for Function Generation of Brain)

  • 임성빈;최우경;김성주;하상형;전홍태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.381-384
    • /
    • 2005
  • 현존하는 정보처리 시스템 중에서 가장 뛰어난 성능을 지니고 있는 것은 인간의 두뇌라고 할 수 있다. 두뇌의 정보처리 메커니즘을 보다 정확하게 구현할 수 있는 시스템은 입력에 대한 정확한 인지 능력, 상황 판단 능력, 학습 및 추론 능력, 출력의 결정 능력 등의 성능 구현은 물론이며, 감정과 비교될 수 있는 시스템의 상태를 평가하여 판단 및 결정에 적용함으로써 매우 뛰어난 지능형 시스템이 쥘 수 있다. 이러한 뇌 정보처리 시스템의 구현에 앞서 본 논문에서는 생물학적인 대뇌 피질의 구조를 살피고 정보의 처리 영역을 고찰하고 정보의 흐름을 소개하였으며 이를 바탕으로 뇌 정보처리 메커니즘을 공학적인 측면에서 해석해 보았다. 특히, 뇌 영역의 기능 및 구조적인 특징, 정보의 처리과정 등을 공학적으로 해석하였으며 이는 뇌의 기능을 모방한 공학적인 모델을 구현하는데 있어서 기초가 될 것이다.

  • PDF

Polynomially Adjusted Normal Approximation to the Null Distribution of Ansari-Bradley Statistic

  • Ha, Hyung-Tae;Yang, Wan-Youn
    • 응용통계연구
    • /
    • 제24권6호
    • /
    • pp.1161-1168
    • /
    • 2011
  • The approximation for the distribution functions of nonparametric test statistics is a significant step in statistical inference. A rank sum test for dispersions proposed by Ansari and Bradley (1960), which is widely used to distinguish the variation between two populations, has been considered as one of the most popular nonparametric statistics. In this paper, the statistical tables for the distribution of the nonparametric Ansari-Bradley statistic is produced by use of polynomially adjusted normal approximation as a semi parametric density approximation technique. Polynomial adjustment can significantly improve approximation precision from normal approximation. The normal-polynomial density approximation for Ansari-Bradley statistic under finite sample sizes is utilized to provide the statistical table for various combination of its sample sizes. In order to find the optimal degree of polynomial adjustment of the proposed technique, the sum of squared probability mass function(PMF) difference between the exact distribution and its approximant is measured. It was observed that the approximation utilizing only two more moments of Ansari-Bradley statistic (in addition to the first two moments for normal approximation provide) more accurate approximations for various combinations of parameters. For instance, four degree polynomially adjusted normal approximant is about 117 times more accurate than normal approximation with respect to the sum of the squared PMF difference.

퍼지 규칙 최적화를 위한 유전자 알고리즘 (A genetic algorithm for generating optimal fuzzy rules)

  • 임창균;정영민;김응곤
    • 한국정보통신학회논문지
    • /
    • 제7권4호
    • /
    • pp.767-778
    • /
    • 2003
  • 이 논문은 유전자 알고리즘을 이용한 최적의 퍼지 규칙을 만드는 방법을 제시한다. 퍼지 규칙은 첫 번째 단계에서 학습 데이터를 이용해 생성된다. 이 단계에서 퍼지 c-Means 군집화 알고리즘과 군집 유효성을 사용해 구조를 결정하고 퍼지 규칙 수가 되는 군집 수를 결정한다. 첫 번째 단계에서 구조가 결정되면 퍼지규칙의 매개변수들은 유전자 알고리즘을 이용해서 조율된다. 또한, 비대칭 가우시안 소속 함수를 위해 분산 매개변수는 좌ㆍ우값을 따로 관리하여 조율한다. 이 방법은 가중치와 분산 공간에서 유전자 알고리즘을 사용함으로서 전역 최소 쪽으로 수렴하도록 한다.

2인 조정게임의 베이지안 의사결정모형 (On the Bayesian Fecision Making Model of 2-Person Coordination Game)

  • 김정훈;정민용
    • 한국경영과학회지
    • /
    • 제22권3호
    • /
    • pp.113-143
    • /
    • 1997
  • Most of the conflict problems between 2 persons can be represented as a bi-matrix game, because player's utilities, in general, are non-zero sum and change according to the progress of game. In the bi-matrix game the equilibrium point set which satisfies the Pareto optimality can be a good bargaining or coordination solution. Under the condition of incomplete information about the risk attitudes of the players, the bargaining or coordination solution depends on additional elements, namely, the players' methods of making inferences when they reach a node in the extensive form of the game that is off the equilibrium path. So the investigation about the players' inference type and its effects on the solution is essential. In addition to that, the effect of an individual's aversion to risk on various solutions in conflict problems, as expressed in his (her) utility function, must be considered. Those kinds of incomplete information make decision maker Bayesian, since it is often impossible to get correct information for building a decision making model. In Baysian point of view, this paper represents an analytic frame for guessing and learning opponent's attitude to risk for getting better reward. As an example for that analytic frame. 2 persons'bi-matrix game is considered. This example explains that a bi-matrix game can be transformed into a kind of matrix game through the players' implicitly cooperative attitude and the need of arbitration.

  • PDF

적응형 계층적 공정 경쟁 기반 병렬유전자 알고리즘의 구현 및 비선형 시스템 모델링으로의 적용 (Implementation of Adaptive Hierarchical Fair Com pet ion-based Genetic Algorithms and Its Application to Nonlinear System Modeling)

  • 최정내;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.120-122
    • /
    • 2006
  • The paper concerns the hybrid optimization of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA) and information data granulation. The granulation is realized with the aid of the Hard C-means clustering and HFCGA is a kind of multi-populations of Parallel Genetic Algorithms (PGA), and it is used for structure optimization and parameter identification of fuzzy model. It concerns the fuzzy model-related parameters such as the number of input variables to be used, a collection of specific subset of input variables, the number of membership functions, the order of polynomial, and the apexes of the membership function. In the hybrid optimization process, two general optimization mechanisms are explored. Thestructural optimization is realized via HFCGA and HCM method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods.

  • PDF

진화론적으로 최적화된 FPN에 의한 자기구성 퍼지 다항식 뉴럴 네트워크의 최적 설계 (Optimal design of Self-Organizing Fuzzy Polynomial Neural Networks with evolutionarily optimized FPN)

  • 박호성;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.12-14
    • /
    • 2005
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks(SOFPNN) by means of genetically optimized fuzzy polynomial neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms(GAs). The conventional SOFPNNs hinges on an extended Group Method of Data Handling(GMDH) and exploits a fixed fuzzy inference type in each FPN of the SOFPNN as well as considers a fixed number of input nodes located in each layer. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, a collection of the specific subset of input variables, and the number of membership function) and addresses specific aspects of parametric optimization. Therefore, the proposed SOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. To evaluate the performance of the genetically optimized SOFPNN, the model is experimented with using two time series data(gas furnace and chaotic time series).

  • PDF