• 제목/요약/키워드: Inference function

검색결과 450건 처리시간 0.02초

모형의 복잡성, 구조 및 목적함수가 모형 검정에 미치는 영향 (Effects of Model Complexity, Structure and Objective Function on Calibration Process)

  • Choi, Kyung Sook
    • 한국농공학회지
    • /
    • 제45권4호
    • /
    • pp.89-97
    • /
    • 2003
  • Using inference models developed for estimation of the parameters necessary to implement the Runoff Block of the Stormwater Management Model (SWMM), a number of alternative inference scenarios were developed to assess the influence of inference model complexity and structure on the calibration of the catchment modelling system. These inference models varied from the assumption of a spatially invariant value (catchment average) to spatially variable with each subcatchment having its own unique values. Fur-thermore, the influence of different measures of deviation between the recorded information and simulation predictions were considered. The results of these investigations indicate that the model performance is more influenced by model structure than complexity, and control parameter values are very much dependent on objective function selected as this factor was the most influential for both the initial estimates and the final results.

다기능 레이더의 추적 성능 개선을 위한 퍼지 추론 시스템 기반 임무 우선 순위 선정 기법 연구 (A Study of Fuzzy Inference System Based Task Prioritizations for the Improvement of Tracking Performance in Multi-Function Radar)

  • 김현주;박준영;김동환;김선주
    • 한국전자파학회논문지
    • /
    • 제24권2호
    • /
    • pp.198-206
    • /
    • 2013
  • 본 논문에서는 다기능 레이더의 추적 성능 개선을 위해 임무 우선 순위 선정을 위한 퍼지 추론 시스템 기반의 기법을 제안하였다. 제안한 기법은 추적 임무 수행 시 우선 순위 결정 트리를 구성하고, 퍼지 집합으로 추적 안정도, 위협도, 접근성을 선정하고, 퍼지 규칙을 통한 추적 임무의 우선 순위를 얻는 방식이다. 우선 순위를 높게 책정할 경우, 추적 주기를 변화시켜 추적의 정확도를 높일 수 있도록 설계하였다. 추적 성능 개선 효과를 입증하기 위해 기동 특성이 뚜렷한 표적 궤적을 생성하고, 제안된 기법을 적용한 경우와 적용하지 않은 경우를 시뮬레이션으로 비교 분석하였다.

Posterior Inference in Single-Index Models

  • Park, Chun-Gun;Yang, Wan-Yeon;Kim, Yeong-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • 제11권1호
    • /
    • pp.161-168
    • /
    • 2004
  • A single-index model is useful in fields which employ multidimensional regression models. Many methods have been developed in parametric and nonparametric approaches. In this paper, posterior inference is considered and a wavelet series is thought of as a function approximated to a true function in the single-index model. The posterior inference needs a prior distribution for each parameter estimated. A prior distribution of each coefficient of the wavelet series is proposed as a hierarchical distribution. A direction $\beta$ is assumed with a unit vector and affects estimate of the true function. Because of the constraint of the direction, a transformation, a spherical polar coordinate $\theta$, of the direction is required. Since the posterior distribution of the direction is unknown, we apply a Metropolis-Hastings algorithm to generate random samples of the direction. Through a Monte Carlo simulation we investigate estimates of the true function and the direction.

Reject Inference of Incomplete Data Using a Normal Mixture Model

  • Song, Ju-Won
    • 응용통계연구
    • /
    • 제24권2호
    • /
    • pp.425-433
    • /
    • 2011
  • Reject inference in credit scoring is a statistical approach to adjust for nonrandom sample bias due to rejected applicants. Function estimation approaches are based on the assumption that rejected applicants are not necessary to be included in the estimation, when the missing data mechanism is missing at random. On the other hand, the density estimation approach by using mixture models indicates that reject inference should include rejected applicants in the model. When mixture models are chosen for reject inference, it is often assumed that data follow a normal distribution. If data include missing values, an application of the normal mixture model to fully observed cases may cause another sample bias due to missing values. We extend reject inference by a multivariate normal mixture model to handle incomplete characteristic variables. A simulation study shows that inclusion of incomplete characteristic variables outperforms the function estimation approaches.

Fuzzy Inference Mechanism Based on Fuzzy Cognitive Map for B2B Negotiation

  • Lee, Kun-Chang;Kang, Byung-Uk
    • 한국전자거래학회:학술대회논문집
    • /
    • 한국전자거래학회 2004년도 e-Biz World Conference
    • /
    • pp.134-149
    • /
    • 2004
  • This paper is aimed at proposing a fuzzy inference mechanism to enhancing the quality of cognitive map-based inference. Its main virtue lies in the two mechanisms: (1) a mechanism for avoiding a synchronization problem which is often observed during inference process with traditional cognitive map, and (2) a mechanism for fuzzifying decision maker's subjective judgment. Our proposed fuzzy inference mechanism (FIM) is basically based on the cognitive map stratification algorithm which can stratify a cognitive map into number of strata and then overcome the synchronization problem successfully. Besides, the proposed FIM depends on fuzzy membership function which is administered by decision maker. With an illustrative B2B negotiation problem, we applied the proposed FIM, deducing theoretical and practical implications. Implementation was conducted by Matlab language.

  • PDF

Application of Fuzzy Algorithm with Learning Function to Nuclear Power Plant Steam Generator Level Control

  • Park, Gee-Yong-;Seong, Poong-Hyun;Lee, Jae-Young-
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1054-1057
    • /
    • 1993
  • A direct method of fuzzy inference and a fuzzy algorithm with learning function are applied to the steam generator level control of nuclear power plant. The fuzzy controller by use of direct inference can control the steam generator in the entire range of power level. There is a little long response time of fuzzy direct inference controller at low power level. The rule base of fuzzy controller with learning function is divided into two parts. One part of the rule base is provided to level control of steam generator at low power level (0%∼30% of full power). Response time of steam generator level control at low power level with this rule base is shown generator level control at low power level with this rule base is shown to be shorter than that of fuzzy controller with direct inference.

  • PDF

적응 뉴로 퍼지추론 기법에 의한 비선형 시스템의 구조 동정에 관한 연구 (Structure Identification of Nonlinear System Using Adaptive Neuro-Fuzzy Inference Technique)

  • 이준탁;정형환;심영진;김형배;박영식
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.298-301
    • /
    • 1996
  • This paper describes the structure Identification of nonlinear function using Adaptive Neuro-Fuzzy Inference Technique(ANFIS). Nonlinear mapping relationship between inputs and outputs were modeled by Sugeno-Takaki's Fuzzy Inference Method. Specially, the consequent parts were identified using a series of 1st order equations and the antecedent parts using triangular type membership function or bell type ones. According to learning Rules of ANFIS, adjustable parameters were converged rapidly and accurately.

  • PDF

퍼지 신경망을 이용한 퍼지 추론 시스템의 학습 및 추론 (Learning and inference of fuzzy inference system with fuzzy neural network)

  • 장대식;최형일
    • 전자공학회논문지B
    • /
    • 제33B권2호
    • /
    • pp.118-130
    • /
    • 1996
  • Fuzzy inference is very useful in expressing ambiguous problems quantitatively and solving them. But like the most of the knowledge based inference systems. It has many difficulties in constructing rules and no learning capability is available. In this paper, we proposed a fuzzy inference system based on fuzy associative memory to solve such problems. The inference system proposed in this paper is mainly composed of learning phase and inference phase. In the learning phase, the system initializes it's basic structure by determining fuzzy membership functions, and constructs fuzzy rules in the form of weights using learning function of fuzzy associative memory. In the inference phase, the system conducts actual inference using the constructed fuzzy rules. We applied the fuzzy inference system proposed in this paper to a pattern classification problem and show the results in the experiment.

  • PDF

Inference on the reliability P(Y < X) in the gamma case

  • Moon, Yeung-Gil;Lee, Chang-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권1호
    • /
    • pp.219-223
    • /
    • 2009
  • We shall derive a quotient distribution of two independent gamma variables and its moment and reliability are represented by hypergeometric function and Wittaker's function. And we shall consider an inference on the reliability in two independent gamma random variables.

  • PDF

Reliability and ratio in exponentiated complementary power function distribution

  • Moon, Yeung-Gil;Lee, Chang-Soo;Ryu, Se-Gi
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권5호
    • /
    • pp.955-960
    • /
    • 2009
  • As we shall dene an exponentiated complementary power function distribution, we shall consider moments, hazard rate, and inference for parameter in the distribution. And we shall consider an inference of the reliability and distributions for the quotient and the ratio in two independent exponentiated complementary power function random variables.

  • PDF