• 제목/요약/키워드: Inference and Uncertainty

검색결과 109건 처리시간 0.023초

Uncertainty reduction of seismic fragility of intake tower using Bayesian Inference and Markov Chain Monte Carlo simulation

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.47-53
    • /
    • 2017
  • The fundamental goal of this study is to minimize the uncertainty of the median fragility curve and to assess the structural vulnerability under earthquake excitation. Bayesian Inference with Markov Chain Monte Carlo (MCMC) simulation has been presented for efficient collapse response assessment of the independent intake water tower. The intake tower is significantly used as a diversion type of the hydropower station for maintaining power plant, reservoir and spillway tunnel. Therefore, the seismic fragility assessment of the intake tower is a pivotal component for estimating total system risk of the reservoir. In this investigation, an asymmetrical independent slender reinforced concrete structure is considered. The Bayesian Inference method provides the flexibility to integrate the prior information of collapse response data with the numerical analysis results. The preliminary information of risk data can be obtained from various sources like experiments, existing studies, and simplified linear dynamic analysis or nonlinear static analysis. The conventional lognormal model is used for plotting the fragility curve using the data from time history simulation and nonlinear static pushover analysis respectively. The Bayesian Inference approach is applied for integrating the data from both analyses with the help of MCMC simulation. The method achieves meaningful improvement of uncertainty associated with the fragility curve, and provides significant statistical and computational efficiency.

퍼지 로직 시스템을 이용한 항공기 가스터빈 엔진 오류 검출에 대한 연구 (Fault Diagnosis in Gas Turbine Engine Using Fuzzy Inference Logic)

  • 모은종;지민석;김진수;이강웅
    • 제어로봇시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.49-53
    • /
    • 2008
  • A fuzzy inference logic system is proposed for gas turbine engine fault isolation. The gas path measurements used for fault isolation are exhaust gas temperature, low and high rotor speed, and fuel flow. The fuzzy inference logic uses rules developed from a model of performance influence coefficients to isolate engine faults while accounting for uncertainty in gas path measurements. Inputs to the fuzzy inference logic system are measurement deviations of gas path parameters which are transferred directly from the ECM(Engine Control Monitoring) program and outputs are engine module faults. The proposed fuzzy inference logic system is tested using simulated data developed from the ECM trend plot reports and the results show that the proposed fuzzy inference logic system isolates module faults with high accuracy rate in the environment of high level of uncertainty.

Multiple Instance Mamdani Fuzzy Inference

  • Khalifa, Amine B.;Frigui, Hichem
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권4호
    • /
    • pp.217-231
    • /
    • 2015
  • A novel fuzzy learning framework that employs fuzzy inference to solve the problem of Multiple Instance Learning (MIL) is presented. The framework introduces a new class of fuzzy inference systems called Multiple Instance Mamdani Fuzzy Inference Systems (MI-Mamdani). In multiple instance problems, the training data is ambiguously labeled. Instances are grouped into bags, labels of bags are known but not those of individual instances. MIL deals with learning a classifier at the bag level. Over the years, many solutions to this problem have been proposed. However, no MIL formulation employing fuzzy inference exists in the literature. Fuzzy logic is powerful at modeling knowledge uncertainty and measurements imprecision. It is one of the best frameworks to model vagueness. However, in addition to uncertainty and imprecision, there is a third vagueness concept that fuzzy logic does not address quiet well, yet. This vagueness concept is due to the ambiguity that arises when the data have multiple forms of expression, this is the case for multiple instance problems. In this paper, we introduce multiple instance fuzzy logic that enables fuzzy reasoning with bags of instances. Accordingly, a MI-Mamdani that extends the standard Mamdani inference system to compute with multiple instances is introduced. The proposed framework is tested and validated using a synthetic dataset suitable for MIL problems. Additionally, we apply the proposed multiple instance inference to fuse the output of multiple discrimination algorithms for the purpose of landmine detection using Ground Penetrating Radar.

A Nutrition Evaluation System Based on Hierarchical Fuzzy Approach

  • Son, Chang-S.;Jeong, Gu-Beom
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권2호
    • /
    • pp.87-93
    • /
    • 2008
  • In this paper, we propose a hierarchical fuzzy based nutrition evaluation system that can analyze the individuals' nutrition status through the inference results generated by each layer. Moreover, a method to minimize the uncertainty of inference in the evaluated nutrition status is discussed. To show the effect of the uncertainty in fuzzy inference, we compared the results of nutrition evaluation with/without the certainty factor of rules on 132 people over the age of 65. From the experimental results, we can see that the evaluation method with the modified certainty factor provides better reliability than that of the general evaluation method without the certainty factor.

SHM-based probabilistic representation of wind properties: Bayesian inference and model optimization

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • 제21권5호
    • /
    • pp.601-609
    • /
    • 2018
  • The estimated probabilistic model of wind data based on the conventional approach may have high discrepancy compared with the true distribution because of the uncertainty caused by the instrument error and limited monitoring data. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method has been developed in the companion paper and is conducted to formulate the joint probability density function (PDF) of wind speed and direction using the wind monitoring data of the investigated bridge. The established bivariate model of wind speed and direction only represents the features of available wind monitoring data. To characterize the stochastic properties of the wind parameters with the subsequent wind monitoring data, in this study, Bayesian inference approach considering the uncertainty is proposed to update the wind parameters in the bivariate probabilistic model. The slice sampling algorithm of Markov chain Monte Carlo (MCMC) method is applied to establish the multi-dimensional and complex posterior distribution which is analytically intractable. The numerical simulation examples for univariate and bivariate models are carried out to verify the effectiveness of the proposed method. In addition, the proposed Bayesian inference approach is used to update and optimize the parameters in the bivariate model using the wind monitoring data from the investigated bridge. The results indicate that the proposed Bayesian inference approach is feasible and can be employed to predict the bivariate distribution of wind speed and direction with limited monitoring data.

베이즈 추론을 수학과 교육과정에 도입하는 것의 실제 의미에 대한 일고찰 (A consideration of the real meanings of introducing Bayesian inference into school mathematics curriculum)

  • 박선용
    • 한국수학사학회지
    • /
    • 제37권1호
    • /
    • pp.1-17
    • /
    • 2024
  • In this study, we identified the intellectual triggers for Bayesian inference and what key ideas contributed to its occurrence and discussed the practical implications of introducing Bayesian inference into the school mathematics curriculum by reflecting them. The results of the study show that the need for statistical inference about the parameter itself served as a trigger for the occurrence of Bayesian inference, and the most important idea for the occurrence of that inference was to regard the parameter itself as a probability variable rather than any fixed value. On the other hand, these research results suggest that the meaning of introducing Bayesian inference into the secondary mathematics curriculum is 'statistics education that expands the scope of uncertainty'.

상태변수 종속 불확실성이 포함된 다입력 비선형 계통에 대한 전역 안정성이 보장되는 견실한 적응 퍼지 제어기 설계 (A design of a robust adaptive fuzzy controller globally stabilizing the multi-input nonlinear system with state-dependent uncertainty)

  • 박영환;박귀태
    • 제어로봇시스템학회논문지
    • /
    • 제2권4호
    • /
    • pp.297-305
    • /
    • 1996
  • In this paper a novel robust adaptive fuzzy controller for the nonlinear system with state-dependent uncertainty is proposed. The conventional adaptive fuzzy controller determines the function of state variable bounding the state-dependent uncertain term in the system dynamics on the local state space by off-line calculation. Whereas the proposed method determines that function by the fuzzy inference so that it guarantees the stability of the closed loop system globally on the whole state space. In addition, the method is applicable to the multi-input system. We applied the proposed method to the Burn Control of the Tokamak fusion reactor whose dynamics contains the state-dependent uncertainty and proved the effectiveness of the scheme by using the simulation results.

  • PDF

상충 해결을 위한 결합지수 연구 (A Study of Combinative Index for Conflict Resolution)

  • 고희병;이수홍;이만호
    • 한국CDE학회논문집
    • /
    • 제5권4호
    • /
    • pp.319-326
    • /
    • 2000
  • Expert systems using uncertain and ambiguous knowledge are not of the recent interests about uncertainty problem for performing inference similar to the decision making of a human expert. Human factors on rule-based systems often involve uncertain information. Expert systems had been used the methods of conflict resolution in a rule conflict situation, but this methods not properly solved the rule conflict. If a human expert appends a new rule to an original rule base, the rule base rightly causes a rule conflict. In this paper, the problem of rule conflict is regarded as one in which uncertainty of information is fundamentally involved. In the reduction of problem with uncertainty, we propose an enhanced rule ordering method, which improve the rule ordering method using Dempster-Shafer theory. We also propose a combinative index, which involve human factors of experts decision making.

  • PDF

Fuzzy Petri Nets를 이용한 퍼지 추론 시스템의 모델링 및 추론기관의 구현 (A Model with an Inference Engine for a Fuzzy Production System Using Fuzzy Petri Nets)

  • 전명근
    • 전자공학회논문지B
    • /
    • 제29B권7호
    • /
    • pp.30-41
    • /
    • 1992
  • As a general model of rule-based systems, we propose a model for a fuzzy production system having chaining rules and an inference engine associated with the model. The concept of so-called 'fuzzy petri nets' is used to model the fuzzy production system and the inference engine is designed to be capable of handling inexact knowledge. The fuzzy logic is adopted to represent vagueness in the rules and the certainty factor is used to express uncertainty of each rules given by a human expert. Parallel, inference schemes are devised by transforming Fuzzy Petri nets to matrix formula. Futher, the inference engine mechanism under the Mamdani's implication method can be desceribed by a simple algebraic formula, which makes real time inference possible.

  • PDF

Inference and Forecasting Based on the Phillips Curve

  • KIM, KUN HO;PARK, SUNA
    • KDI Journal of Economic Policy
    • /
    • 제38권2호
    • /
    • pp.1-20
    • /
    • 2016
  • In this paper, we conduct uniform inference of two widely used versions of the Phillips curve, specifically the random-walk Phillips curve and the New-Keynesian Phillips curve (NKPC). For both specifications, we propose a potentially time-varying natural unemployment (NAIRU) to address the uncertainty surrounding the inflation-unemployment trade-off. The inference is conducted through the construction of what is known as the uniform confidence band (UCB). The proposed methodology is then applied to point-ahead inflation forecasting for the Korean economy. This paper finds that the forecasts can benefit from conducting UCB-based inference and that the inference results have important policy implications.

  • PDF