• Title/Summary/Keyword: Inference algorithm

Search Result 747, Processing Time 0.027 seconds

Endocardial boundary detection by fuzzy inference on echocardiography (퍼지 추론에 의한 심초음파 영상의 심내벽 윤곽선 검출)

  • 원철호;채승표;구성모;김명남;조진호
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.5
    • /
    • pp.35-44
    • /
    • 1997
  • In this paper, a an algorithm that detects the endocardial boundary, expanding the region from endocardial cavity using fuzzy inference, is proposed. This algorithm decides the ventricular cavity by fuzzy inference in process of searching each pixel from the inside of left ventricle in echocardial image and expands it. Uncertainty and fuzziness exists in decision of endocardial boundary. Therefore, we convert the lingustic representation of mean, standard deviation, and threshold value that are characteristic variables of endocardial boundary to fuzzy input and output variables. And, we extract proposed method is robuster to noise than radial searching method that is highly dependent on center position. To prove the similarity of detected boundary by fuzzy nference, we used the measures of SIZE, correlation coefficient, MSD, and RMSE and had acquired reasonable results.

  • PDF

Design of Extended Multi-FNNs model based on HCM and Genetic Algorithm (HCM과 유전자 알고리즘에 기반한 확장된 다중 FNN 모델 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.420-423
    • /
    • 2001
  • In this paper, the Multi-FNNs(Fuzzy-Neural Networks) architecture is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNNs architecture uses simplified inference and linear inference as fuzzy inference method and error back propagation algorithm as learning rules. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNNs according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNNs model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model we use the time series data for gas furnace and the NOx emission process data of gas turbine power plant.

  • PDF

Spring Flow Prediction affected by Hydro-power Station Discharge using the Dynamic Neuro-Fuzzy Local Modeling System

  • Hong, Timothy Yoon-Seok;White, Paul Albert.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.58-66
    • /
    • 2007
  • This paper introduces the new generic dynamic neuro-fuzzy local modeling system (DNFLMS) that is based on a dynamic Takagi-Sugeno (TS) type fuzzy inference system for complex dynamic hydrological modeling tasks. The proposed DNFLMS applies a local generalization principle and an one-pass training procedure by using the evolving clustering method to create and update fuzzy local models dynamically and the extended Kalman filtering learning algorithm to optimize the parameters of the consequence part of fuzzy local models. The proposed DNFLMS is applied to develop the inference model to forecast the flow of Waikoropupu Springs, located in the Takaka Valley, South Island, New Zealand, and the influence of the operation of the 32 Megawatts Cobb hydropower station on springs flow. It is demonstrated that the proposed DNFLMS is superior in terms of model accuracy, model complexity, and computational efficiency when compared with a multi-layer perceptron trained with the back propagation learning algorithm and well-known adaptive neural-fuzzy inference system, both of which adopt global generalization.

  • PDF

Adaptive Watermarking based on Fuzzy Inference and Human Visual System (퍼지 추론과 시각특성 기반의 적응적 워터마킹)

  • Shin Hee-Jong;Park Ki-Hong;Kim Yoon-Ho
    • Journal of Digital Contents Society
    • /
    • v.5 no.4
    • /
    • pp.311-315
    • /
    • 2004
  • In this paper, we proposed a robust watermarking algorithm based on fuzzy inference and human visual system. In the first, discrete wavelet transform(DWT) is involved to calculate additive energy strength, then we devised fuzzy inference, which was established by computing contrast and texture degree in gray-level image. Watermark is embeded into the coefficients of 3-level DWT so as to consider a spatial effects. Visual recognizable patterns such as binary image were used as a watermark Consequently, experimental results showed that proposed algorithm is robust in JPEC compression.

  • PDF

Fuzzy Inference-based Reinforcement Learning of Dynamic Recurrent Neural Networks

  • Jun, Hyo-Byung;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.60-66
    • /
    • 1997
  • This paper presents a fuzzy inference-based reinforcement learning algorithm of dynamci recurrent neural networks, which is very similar to the psychological learning method of higher animals. By useing the fuzzy inference technique the linguistic and concetional expressions have an effect on the controller's action indirectly, which is shown in human's behavior. The intervlas of fuzzy membership functions are found optimally by genetic algorithms. And using recurrent neural networks composed of dynamic neurons as action-generation networks, past state as well as current state is considered to make an action in dynamical environment. We show the validity of the proposed learning algorithm by applying it to the inverted pendulum control problem.

  • PDF

A Pattern Classification of HDD (Hard Disk Drive) Defect Distribution Using Fuzzy Inference (퍼지 추론을 이용한 HDD (Hard Disk Drive) 결함 분포의 패턴 분류)

  • Moon Un-Chul;Kwon Hyun-Tae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.383-389
    • /
    • 2005
  • This paper proposes a pattern classification algorithm for the defect distribution of Hard Disk Drive (HDD). In the HDD production, the defect pattern of defective HDD set is important information to diagnosis of defective HDD set. In this paper, 5 characteristics are determined for the classification to six standard defect pattern classes. A fuzzy inference system is proposed, the inputs of which are 5 characteristic values and the outputs are the possibilities that the input pattern is classified to standard patterns. Therefore, classification result is the pattern with maximum possibility. The proposed algorithm is implemented with the PC system for defective HDD sets and shows its effectiveness.

Design of Type-2 FCM-based Fuzzy Inference Systems and Its Optimization (Type-2 FCM 기반 퍼지 추론 시스템의 설계 및 최적화)

  • Park, Keon-Jun;Kim, Yong-Kab;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2157-2164
    • /
    • 2011
  • In this paper, we introduce a new category of fuzzy inference system based on Type-2 fuzzy c-means clustering algorithm (T2FCM-based FIS). The premise part of the rules of the proposed model is realized with the aid of the scatter partition of input space generated by Type-2 FCM clustering algorithm. The number of the partition of input space is composed of the number of clusters and the individual partitioned spaces describe the fuzzy rules. Due to these characteristics, we can alleviate the problem of the curse of dimensionality. The consequence part of the rule is represented by polynomial functions with interval sets. To determine the structure and estimate the values of the parameters of Type-2 FCM-based FIS we consider the successive tuning method with generation-based evolution by means of real-coded genetic algorithms. The proposed model is evaluated with the use of numerical experimentation.

Variational Bayesian inference for binary image restoration using Ising model

  • Jang, Moonsoo;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.1
    • /
    • pp.27-40
    • /
    • 2022
  • In this paper, the focus on the removal noise in the binary image based on the variational Bayesian method with the Ising model. The observation and the latent variable are the degraded image and the original image, respectively. The posterior distribution is built using the Markov random field and the Ising model. Estimating the posterior distribution is the same as reconstructing a degraded image. MCMC and variational Bayesian inference are two methods for estimating the posterior distribution. However, for the sake of computing efficiency, we adapt the variational technique. When the image is restored, the iterative method is used to solve the recursive problem. Since there are three model parameters in this paper, restoration is implemented using the VECM algorithm to find appropriate parameters in the current state. Finally, the restoration results are shown which have maximum peak signal-to-noise ratio (PSNR) and evidence lower bound (ELBO).

A Bayesian Approach for Record Value Statistics Model Using Nonhomogeneous Poisson Process

  • Kiheon Choi;Hee chual Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.1
    • /
    • pp.259-269
    • /
    • 1997
  • Bayesian inference for a record value statistics(RVS) model of nonhomogeneous Poisson process is considered. We seal with Bayesian inference for double exponential, Gamma, Rayleigh, Gumble RVS models using Gibbs sampling and Metropolis algorithm and also explore Bayesian computation and model selection.

  • PDF

LINEAR POLYNOMIAL CONSTRAINTS INFERENCING ALGORITHM

  • Chi, Sung-Do
    • Journal of applied mathematics & informatics
    • /
    • v.3 no.2
    • /
    • pp.129-148
    • /
    • 1996
  • This paper propose the inference mechanism for handling linear polynomial constraints called consistency checking algorithm based on the feasibility checking algorithm borrowed from linear pro-gramming. in contrast with other approaches proposed algorithm can efficiently and coherented by linear polynomial forms. The developed algorithm is successfully applied to the symbolic simulation that offers a convenient means to conduct multiple simultaneous exploration of model behaviors.