• 제목/요약/키워드: Inference System

검색결과 1,627건 처리시간 0.029초

Machine learning application for predicting the strawberry harvesting time

  • Yang, Mi-Hye;Nam, Won-Ho;Kim, Taegon;Lee, Kwanho;Kim, Younghwa
    • 농업과학연구
    • /
    • 제46권2호
    • /
    • pp.381-393
    • /
    • 2019
  • A smart farm is a system that combines information and communication technology (ICT), internet of things (IoT), and agricultural technology that enable a farm to operate with minimal labor and to automatically control of a greenhouse environment. Machine learning based on recently data-driven techniques has emerged with big data technologies and high-performance computing to create opportunities to quantify data intensive processes in agricultural operational environments. This paper presents research on the application of machine learning technology to diagnose the growth status of crops and predicting the harvest time of strawberries in a greenhouse according to image processing techniques. To classify the growth stages of the strawberries, we used object inference and detection with machine learning model based on deep learning neural networks and TensorFlow. The classification accuracy was compared based on the training data volume and training epoch. As a result, it was able to classify with an accuracy of over 90% with 200 training images and 8,000 training steps. The detection and classification of the strawberry maturities could be identified with an accuracy of over 90% at the mature and over mature stages of the strawberries. Concurrently, the experimental results are promising, and they show that this approach can be applied to develop a machine learning model for predicting the strawberry harvesting time and can be used to provide key decision support information to both farmers and policy makers about optimal harvest times and harvest planning.

EfficientNet 활용한 딸기 병해 진단 서비스 (Strawberry disease diagnosis service using EfficientNet)

  • 이창준;김진성;박준;김준영;박성욱;정세훈;심춘보
    • 스마트미디어저널
    • /
    • 제11권5호
    • /
    • pp.26-37
    • /
    • 2022
  • 본 논문에서는 시설재배 작물 중 딸기의 초기 병해를 방제하고자 이미지를 자동으로 취득하고, EfficientNet 모델을 활용해 병해를 분석하여 농민에게 병해 여부를 알려주고, 전문가를 통한 병해 진단 서비스를 제안한다. 딸기 생육단계의 이미지를 취득하고, 학습된 EfficientNet 모델을 활용해 병해 진단 분석결과를 농민의 애플리케이션으로 전송 후 전문가의 피드백을 신속하게 받을 수 있다. 데이터 세트로는 실제 시설재배를 운영하는 농민을 섭외하여 시스템을 이용해 이미지를 취득하였고, 핸드폰으로 촬영한 이미지의 초안을 활용하여 데이터가 부족한 문제를 해결했다. 실험 결과 EfficientNet B0부터 B7까지의 정확도는 유사하여 추론 속도가 가장 빠른 B0를 채택했다. 성능향상을 위해 ImageNet으로 사전학습 된 모델을 사용해 Fine-tuning 했고, 100 Epoch부터 급격한 성능향상을 확인했다. 제안하는 서비스는 초기 병해를 빠르게 탐지하여 생산량을 증대시킬 것으로 기대한다.

Application of AI models for predicting properties of mortars incorporating waste powders under Freeze-Thaw condition

  • Cihan, Mehmet T.;Arala, Ibrahim F.
    • Computers and Concrete
    • /
    • 제29권3호
    • /
    • pp.187-199
    • /
    • 2022
  • The usability of waste materials as raw materials is necessary for sustainable production. This study investigates the effects of different powder materials used to replace cement (0%, 5% and 10%) and standard sand (0%, 20% and 30%) (basalt, limestone, and dolomite) on the compressive strength (fc), flexural strength (fr), and ultrasonic pulse velocity (UPV) of mortars exposed to freeze-thaw cycles (56, 86, 126, 186 and 226 cycles). Furthermore, the usability of artificial intelligence models is compared, and the prediction accuracy of the outputs is examined according to the inputs (powder type, replacement ratio, and the number of cycles). The results show that the variability of the outputs was significantly high under the freeze-thaw effect in mortars produced with waste powder instead of those produced with cement and with standard sand. The highest prediction accuracy for all outputs was obtained using the adaptive-network-based fuzzy inference system model. The significantly high prediction accuracy was obtained for the UPV, fc, and fr of mortars produced using waste powders instead of standard sand (R2 of UPV, fc and ff is 0.931, 0.759 and 0.825 respectively), when under the freeze-thaw effect. However, for the mortars produced using waste powders instead of cement, the prediction accuracy of UPV was significantly high (R2=0.889) but the prediction accuracy of fc and fr was low (R2fc=0.612 and R2ff=0.334).

An Integrated Analysis of Recent Changes in Year-on-Year Consumer Price Index and Aggregate Import Price Index in Republic of Korea through Statistical Inference

  • Seok Ho CHANG;Soonhui LEE
    • 아태비즈니스연구
    • /
    • 제14권1호
    • /
    • pp.365-379
    • /
    • 2023
  • Purpose - Our previous study (Chang & Lee, 2023) presented observations on the recent changes in the year-on-year (YoY) Consumer Price Index (CPI) of the Republic of Korea (ROK) after the COVID-19 pandemic. The purpose of this article is to present an integrated analysis and interpretation of the recent changes in CPI and the Aggregate Import Price Index (IPI) by incorporating recent data, specifically data from September 2022 to December 2022. Design/methodology/approach - This study collected CPI (YoY) data in the ROK from January 2019 to December 2022 using e-National Indicator System provided by the ROK. Statistical analysis was employed to analyze the data. Findings - First, we confirm the extended results of the existing study by Chang and Lee (2023). Second, we demonstrate that the Aggregate IPI in ROK increased significantly in 2022 compared to 2021. We then provide an integrated interpretation on the significant increase in CPI and aggregate IPI in ROK, which complements Chang and Lee (2023) that limits their discussion to YoY CPI. Moreover, we show that the IPI of the semiconductor in ROK decreased significantly in 2022 compared to 2021. Research implications or Originality - Our results provide important insights into the recent changes in the CPI in the ROK. The results suggest that these changes can be partially attributed to various factors, such as the global supply chain disruptions resulting from the spread of the COVID-19 pandemic and the prolonged war between Russia and Ukraine, the side effect of quantitative easing by the US Federal Reserve, heat waves and droughts caused by climate change in ROK, a surge in demand following a gradual daily recovery, US-China trade conflict, etc. Our study shows statistically comprehensive results compared to the studies that limit their discussion to YoY average growth rate.

An optimized ANFIS model for predicting pile pullout resistance

  • Yuwei Zhao;Mesut Gor;Daria K. Voronkova;Hamed Gholizadeh Touchaei;Hossein Moayedi;Binh Nguyen Le
    • Steel and Composite Structures
    • /
    • 제48권2호
    • /
    • pp.179-190
    • /
    • 2023
  • Many recent attempts have sought accurate prediction of pile pullout resistance (Pul) using classical machine learning models. This study offers an improved methodology for this objective. Adaptive neuro-fuzzy inference system (ANFIS), as a popular predictor, is trained by a capable metaheuristic strategy, namely equilibrium optimizer (EO) to predict the Pul. The used data is collected from laboratory investigations in previous literature. First, two optimal configurations of EO-ANFIS are selected after sensitivity analysis. They are next evaluated and compared with classical ANFIS and two neural-based models using well-accepted accuracy indicators. The results of all five models were in good agreement with laboratory Puls (all correlations > 0.99). However, it was shown that both EO-ANFISs not only outperform neural benchmarks but also enjoy a higher accuracy compared to the classical version. Therefore, utilizing the EO is recommended for optimizing this predictive tool. Furthermore, a comparison between the selected EO-ANFISs, where one employs a larger population, revealed that the model with the population size of 75 is more efficient than 300. In this relation, root mean square error and the optimization time for the EO-ANFIS (75) were 19.6272 and 1715.8 seconds, respectively, while these values were 23.4038 and 9298.7 seconds for EO-ANFIS (300).

Metaheuristic models for the prediction of bearing capacity of pile foundation

  • Kumar, Manish;Biswas, Rahul;Kumar, Divesh Ranjan;T., Pradeep;Samui, Pijush
    • Geomechanics and Engineering
    • /
    • 제31권2호
    • /
    • pp.129-147
    • /
    • 2022
  • The properties of soil are naturally highly variable and thus, to ensure proper safety and reliability, we need to test a large number of samples across the length and depth. In pile foundations, conducting field tests are highly expensive and the traditional empirical relations too have been proven to be poor in performance. The study proposes a state-of-art Particle Swarm Optimization (PSO) hybridized Artificial Neural Network (ANN), Extreme Learning Machine (ELM) and Adaptive Neuro Fuzzy Inference System (ANFIS); and comparative analysis of metaheuristic models (ANN-PSO, ELM-PSO, ANFIS-PSO) for prediction of bearing capacity of pile foundation trained and tested on dataset of nearly 300 dynamic pile tests from the literature. A novel ensemble model of three hybrid models is constructed to combine and enhance the predictions of the individual models effectively. The authenticity of the dataset is confirmed using descriptive statistics, correlation matrix and sensitivity analysis. Ram weight and diameter of pile are found to be most influential input parameter. The comparative analysis reveals that ANFIS-PSO is the best performing model in testing phase (R2 = 0.85, RMSE = 0.01) while ELM-PSO performs best in training phase (R2 = 0.88, RMSE = 0.08); while the ensemble provided overall best performance based on the rank score. The performance of ANN-PSO is least satisfactory compared to the other two models. The findings were confirmed using Taylor diagram, error matrix and uncertainty analysis. Based on the results ELM-PSO and ANFIS-PSO is proposed to be used for the prediction of bearing capacity of piles and ensemble learning method of joining the outputs of individual models should be encouraged. The study possesses the potential to assist geotechnical engineers in the design phase of civil engineering projects.

Visual Model of Pattern Design Based on Deep Convolutional Neural Network

  • Jingjing Ye;Jun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권2호
    • /
    • pp.311-326
    • /
    • 2024
  • The rapid development of neural network technology promotes the neural network model driven by big data to overcome the texture effect of complex objects. Due to the limitations in complex scenes, it is necessary to establish custom template matching and apply it to the research of many fields of computational vision technology. The dependence on high-quality small label sample database data is not very strong, and the machine learning system of deep feature connection to complete the task of texture effect inference and speculation is relatively poor. The style transfer algorithm based on neural network collects and preserves the data of patterns, extracts and modernizes their features. Through the algorithm model, it is easier to present the texture color of patterns and display them digitally. In this paper, according to the texture effect reasoning of custom template matching, the 3D visualization of the target is transformed into a 3D model. The high similarity between the scene to be inferred and the user-defined template is calculated by the user-defined template of the multi-dimensional external feature label. The convolutional neural network is adopted to optimize the external area of the object to improve the sampling quality and computational performance of the sample pyramid structure. The results indicate that the proposed algorithm can accurately capture the significant target, achieve more ablation noise, and improve the visualization results. The proposed deep convolutional neural network optimization algorithm has good rapidity, data accuracy and robustness. The proposed algorithm can adapt to the calculation of more task scenes, display the redundant vision-related information of image conversion, enhance the powerful computing power, and further improve the computational efficiency and accuracy of convolutional networks, which has a high research significance for the study of image information conversion.

Addressing Inter-floor Noise Issues in Apartment Buildings using On-Sensor AI Embedded with TinyML on Ultra-Low-Power Systems

  • Jae-Won Kwak;In-Yeop Choi
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권3호
    • /
    • pp.75-81
    • /
    • 2024
  • 본 논문은 딥러닝 모델이 포함된 TinyML(Tiny Machine Learning)를 초저전력 시스템에 탑재하여, 층간소음 문제를 실시간으로 처리하는 방법을 제시한다. 이 방법이 가능한 이유는 딥러닝 모델 경량화 기술로 인해 컴퓨팅 리소스가 작은 시스템도 자체적으로 추론을 수행 할 수 있기 때문이다. 기존에 층간소음 문제를 해결하기 위해 제시됐던 방법은 센서에서 수집한 데이터를 서버로 보내어 데이터를 분석한 후에 처리하는 방법 이었다. 하지만 이러한 중앙 처리 방법은 구축 비용이 비싸고 복잡하며, 실시간 처리가 어려운 문제가 있다. 이러한 한계점을 본 논문에서는 TinyML을 사용한 On-Sensor AI(Artificial Intelligent) 로 해결하였다. 본 논문에서 제시한 방법은 시스템 설치가 간단하고 저비용 이면서 문제를 실시간적으로 처리할 수 있다.

In-depth exploration of machine learning algorithms for predicting sidewall displacement in underground caverns

  • Hanan Samadi;Abed Alanazi;Sabih Hashim Muhodir;Shtwai Alsubai;Abdullah Alqahtani;Mehrez Marzougui
    • Geomechanics and Engineering
    • /
    • 제37권4호
    • /
    • pp.307-321
    • /
    • 2024
  • This paper delves into the critical assessment of predicting sidewall displacement in underground caverns through the application of nine distinct machine learning techniques. The accurate prediction of sidewall displacement is essential for ensuring the structural safety and stability of underground caverns, which are prone to various geological challenges. The dataset utilized in this study comprises a total of 310 data points, each containing 13 relevant parameters extracted from 10 underground cavern projects located in Iran and other regions. To facilitate a comprehensive evaluation, the dataset is evenly divided into training and testing subset. The study employs a diverse array of machine learning models, including recurrent neural network, back-propagation neural network, K-nearest neighbors, normalized and ordinary radial basis function, support vector machine, weight estimation, feed-forward stepwise regression, and fuzzy inference system. These models are leveraged to develop predictive models that can accurately forecast sidewall displacement in underground caverns. The training phase involves utilizing 80% of the dataset (248 data points) to train the models, while the remaining 20% (62 data points) are used for testing and validation purposes. The findings of the study highlight the back-propagation neural network (BPNN) model as the most effective in providing accurate predictions. The BPNN model demonstrates a remarkably high correlation coefficient (R2 = 0.99) and a low error rate (RMSE = 4.27E-05), indicating its superior performance in predicting sidewall displacement in underground caverns. This research contributes valuable insights into the application of machine learning techniques for enhancing the safety and stability of underground structures.

계획생성 모듈을 갖는 멀티에이전트 기반구조의 확장방법 (A Method of Extending a Multiagent Framework with a Plan Generation Module)

  • 이광로;박상규;장명욱;민병의;최중민
    • 한국정보처리학회논문지
    • /
    • 제4권9호
    • /
    • pp.2280-2288
    • /
    • 1997
  • 에이전트는 자율성, 사회성, 반응성, 지속성을 갖는 독립된 프로그램으로 지식과 추론 능력을 바탕으로 사용자의 작업을 대신해 준다. 여러 영역들을 포함하는 복잡한 문제를 효과적으로 해결하기 위해서 멀티에이전트 기반구조에 대한 연구가 활발히 진행되어 왔다. 그러나 이런 기반구조에서도 사용자의 질의는 상당히 애매하고 그에 대한 문제 해결에 대한 절차가 바로 생성되지 못하는 문제점이 있다. 이를 위해 멀티에이전트 기반구조에 계획 생성모듈을 추가시켜 좀더 지능을 갖춘 멀티에이전트의 개발이 요구된다. 본 논문에서는 OAA (Open Agent Architecture)를 이용한 에이전트 시스템이 사용자의 의도 파악과 작업수행을 위한 절차를 생성하고, 분산되어 독립적으로 흩어져 사용되고 있는 지식처리 시스템을 통합하여 상호의 지식을 공유하면서 서로 협동 가능하도록 OAA를 이용한 에이전트 시스템에 계획생성 모듈 추가방법을 제안한다. 또한 이방법의 유용성을 검증하기 위해 여행일정 에이전트 시스템에 적용하였다. 이러한 결과로 OAA를 이용한 에이전트 시스템을 사용하는 사용자는 컴퓨터 네트워크 상에서 제공되는 서비스의 제공과 사용에 있어서 좀더 편리한 인터페이스 환경을 제공 받을 수 있게 되었다. 또한 현재 독립적으로 흩어져 사용되고 있는 지식처리 시스템인 전문가 시스템이나 계획기를 통합하여 상호의 지식을 공유하면서 서로 협동으로 일을 처리할 수 있는 환경을 제공한다.

  • PDF