Undeclared nuclear activities are challenging given the lack of information from the sites involved in such activities. Wide-area environmental sampling (WAES) can be an effective method to detect undeclared nuclear activities. However, it is crucial to address the potential risks during the WAES, including sample tampering or extortions. Therefore, tracking and monitoring of various on-site data is imperative to accurately interpret the status of samples and workers throughout the WAES process. 'Environmental and Geographical Data Transfer (EGDT)' was developed for the real-time monitoring of integrated on-site data. EGDT module is equipped with various sensors and can be attached to a worker's uniform or a sample storage box. This study demonstrated the technical effectiveness of EGDT by exploring three experimental methodologies for feasibility assessment. Compared to the Normal Operation case, the inference of the Sample Extortion case was predominantly based on changes in lux and dose rate. The inference of the Out-of-Work-Area case primarily relied on changes in dose rate and acceleration. Finally, the preliminary evaluation of the performance of the developed prototype was conducted, and a foundation was established for enhancing the application in the WAES process.
모바일 헬스케어 디바이스에서 가장 많이 사용되는 PPG 신호는 디바이스 사용자의 움직임의 영향에 따라 심박수 측정의 정확도가 떨어진다. 그 이유는 사용자의 동잡음의 주파수 대역이 PPG 신호의 주파수 대역과 겹쳐 있기 때문이다. 이러한 동잡음을 제거하기 위해 주파수 분석법, 가속도 센서 적용 등의 다양한 방법들이 연구되어 우수한 성능을 제시하였지만, 저가의 헬스케어 디바이스에 이들 필터법을 적용함에 있어 많은 연산처리 시간과 센서 가격 측면 때문에 적용하기가 어렵다. 이러한 문제점을 해결하기 위해 본 연구에서는 실시간으로 보다 정확한 심박수를 추출하기 위해 퍼지추론 시스템과 적응노치 필터를 이용한 PPG 신호처리 기법을 제안하고 그 성능을 평가하였다. 그 결과, 기존의 방법보다 우수한 결과를 보였으며, 이 결과를 토대로 제안된 방법을 모바일 헬스케어 디바이스 설계에 적용한다면 실시간으로 보다 정확한 심박수 측정이 가능할 것이다.
딥러닝 기술의 발달로 무인 자동차, 드론, 로봇 등의 임베디드 시스템 분야에서 DNN을 활용하는 사례가 많아지고 있다. 대표적으로 자율주행 시스템의 경우 정확도가 높고 연산량이 큰 몇 개의 DNN들을 동시에 수행하는 것이 필수적이다. 하지만 상대적으로 낮은 성능을 갖는 임베디드 환경에서 다수의 DNN을 동시에 수행하면 추론에 걸리는 시간이 길어진다. 이러한 현상은 추론 결과에 따른 동작이 제때 이루어지지 않아 비정상적인 기능을 수행하는 문제를 발생시킬 수 있다. 이를 해결하기 위하여 본 논문에서 제안한 솔루션은 먼저 연산량이 큰 DNN에 터커 분해 기법을 적용하여 연산량을 감소시킨다. 그다음으로 DNN 모델들을 GPU 내부에서 은닉층 단위로 최대한 병렬적으로 수행될 수 있게 한다. 실험 결과 DNN의 추론 시간이 제안된 기법을 적용하기 전 대비 최대 75.6% 감소하였다.
For the success of a structural integrity management, it is essential to acquire structural response data at some critical locations with limited number of sensors. In this study, the structural response of numerical model was estimated by data fusion approach based on the Kalman filter known as stochastic recursive filter. Firstly, transient direct analysis was conducted to calculate the acceleration and strain of the numerical standing beam model, then the noise signals were mixed to generate the numerical measurement signals. The acceleration measurement signal was provided to the Kalman filter as an information on the external load, and the displacement measurement, which was transformed from the strain measurement by using strain-displacement conversion relationship, was provided into the Kalman filter as an observation information. Finally, the Kalman filter estimated the displacement by combining both displacements calculated from each numerically measured signal, then the estimated results were compared with the results of the transient direct analysis.
As the increasing expectations of a practical AI (Artificial Intelligence) service makes AI algorithms more complicated, an efficient processor to process AI algorithms is required. To meet this requirement, processors optimized for parallel processing, such as GPUs (Graphics Processing Units), have been widely employed. However, the GPU has a generalized structure for various applications, so it is not optimized for the AI algorithm. Therefore, research on the development of AI processors optimized for AI algorithm processing has been actively conducted. This paper briefly introduces an AI processor especially for inference acceleration, developed by the Electronics and Telecommunications Research Institute, South Korea., and other global vendors for mobile and server platforms. However, the GPU has a generalized structure for various applications, so it is not optimized for the AI algorithm. Therefore, research on the development of AI processors optimized for AI algorithm processing has been actively conducted.
Communications for Statistical Applications and Methods
/
제26권2호
/
pp.131-148
/
2019
Constant stress partially accelerated life tests are studied according to exponentiated Weibull distribution. Grounded on multiple censoring, the maximum likelihood estimators are determined in connection with unknown distribution parameters and accelerated factor. The confidence intervals of the unknown parameters and acceleration factor are constructed for large sample size. However, it is not possible to obtain the Bayes estimates in plain form, so we apply a Markov chain Monte Carlo method to deal with this issue, which permits us to create a credible interval of the associated parameters. Finally, based on constant stress partially accelerated life tests scheme with exponentiated Weibull distribution under multiple censoring, the illustrative example and the simulation results are used to investigate the maximum likelihood, and Bayesian estimates of the unknown parameters.
최근 데이터 획득 위치에 가장 근접하고, 저 수준의 계산력을 제공하는 엣지 기기를 중심으로 직접 딥러닝 추론을 수행하고자 하는 요구가 증가하고 있다. 본 논문에서는 드론에서 촬영한 교통 영상 데이터를 기반으로, 다수의 차량 종류 및 보행자를 식별하는 모델을 Jetson Nano 에 탑재하여 기본 성능을 측정한다. 더불어, 자원제약형 기기 환경에서 TensorRT 와 Deepstream 을 활용하여 객체 식별 모델의 연산 경량화 및 추론 가속화 성능을 극대화하기 위한 구현 및 실험을 수행하여 Anchor-based 및 Anchor-free 객체 식별 모델의 정확도와 실시간 대응력을 평가하고 논의한다.
인간과 컴퓨터의 상호 작용 (Human Computer Interface) 기술의 중요성이 더욱 커지고 있으며 HCI에 대한 연구가 진행됨에 따라 사용자의 직접적인 입력에 의한 컴퓨터 반응이 아닌 감정 추론 혹은 사용자 의도에 따른 컴퓨터 반응에 대한 연구가 증가되고 있다. 스트레스는 현대 인간 문명사회에서의 피할 수 없는 결과이며 복잡한 현상을 나타내며 통제 유무에 따라 인간의 활동능력은 심각한 변화를 받을 수 있다. 본 논문에서는 인간과 컴퓨터의 상호 작용의 일환으로 스트레스를 통해 증가된 심박변이도 (HRV)와 가속도 맥파(APG)를 측정한 후 스트레스를 완화시키기 위한 방안으로 음악을 이용한 지능형 감성 추천시스템을 제안하고자 한다. 사용자의 생체정보 즉, 스트레스 지수를 획득 및 인식하여 신뢰성 있는 데이터를 추출하고자 차분진화 알고리즘을 사용하였으며 이렇게 획득된 스트레스 지수를 단계별에 따라 시멘틱 웹 (Semantic Web)을 통해 감성추론을 하였다. 또한 스트레스 지수와 감성의 변화에 매칭 되는 음악 리스트를 검색 및 추천함으로써 사용자의 생체정보에 맞는 감성 추천시스템을 애플리케이션으로 구현하였다.
본 논문에서는 스마트 면진장치를 효과적으로 제어하기 위하여 퍼지관리제어기를 개발하였고 그 효율성을 검토하였다. 이를 위하여 1세대 스마트 면진 벤치마크 건물을 이용하여 수치해석을 수행하였다. 대상 벤치마크 구조물은 부정형의 평면을 가지고 있는 8층 건물이고 탄성베어링과 MR 감쇠기로 이루어진 스마트 면진장치가 설치되어 있다. 본 논문에서는 다목적 유전자 알고리즘을 이용하여 원거리 지진과 근거리 지진에 대하여 각각 면진구조물을 효과적으로 제어할 수 있는 하위 퍼지제어기를 개발한다. 최적화과정에서는 구조물의 최대 및 RMS 가속도와 면진층 변위의 저감이 목적으로 사용된다. 벤지마크 건물에 지진하중이 가해지면 두 개의 하위 퍼지제어기에서는 각각 다른 명령전압이 제공되는데 이 명령전압들은 퍼지관리제어기의 추론과정에 기반하여 실시간으로 참여율이 조절되어 하나의 명령전압으로 조합된다. 수치해석을 통하여 제안된 퍼지관리제어기법을 사용함으로써 상부구조물의 응답과 면진층의 변위를 효과적으로 줄일 수 있음을 확인할 수 있다.
본 연구에서는 사물인터넷 기술을 이용하는 스마트 웨어러블 기기의 상황인식 기능을 향상시키기 위하여 센서부의 이벤트 데이터에 대한 오차 보정 방안을 제안하였다. 스마트 기기를 통한 상황인식에서 기기의 특성상 필수적인 상황 정보 센싱을 함에 있어서 오차가 불가피하게 발생하고, 이는 예측 성능을 저하시키는 요인이 된다. 이러한 문제를 해결하기 위하여 본 연구에서는 칼만필터의 오류보정 알고리즘을 적용하여 스마트기기의 3축 가속도 센서에서 입수되는 신호 값을 보정하였다. 결과적으로 시계열 데이터를 이루는 3축 가속도 센서가 감지하여 보고하는 데이터에 대한 처리 과정에서 발생하는 오차를 칼만필터를 통하여 효과적으로 제거할 수 있었다. 이 연구가 차후 개발되어질 실시간 상황인지 시스템의 성능을 향상시켜 줄 수 있을 것이라 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.