• 제목/요약/키워드: Inertial measurement unit(IMU)

검색결과 218건 처리시간 0.026초

Periodic Bias Compensation Algorithm for Inertial Navigation System

  • Kim, Hwan-Seong;Nguyen, Duy-Anh;Kim, Heon-Hui
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2004년도 Asia Navigation Conference
    • /
    • pp.45-53
    • /
    • 2004
  • In this paper, an INS compensation algorithm for auto sailing system is proposed, where low cost IMU (Inertial Measurement Unit) is used for measuring the accelerometer data. First, we denote the basic INS algorithm with IMU and show that how to compensate the error of position by using low cost IMU. Second, in considering the ship's characteristic and ocean environments, we consider with a factor as a periodic external disturbance which effects to the exact position. To develop the compensation algorithm, we use a repetitive method to reduce the external environment changes. Lastly, we verify the proposed algorithm by using experiments results.

  • PDF

텔레매틱스 응용을 위한 다중센서통합의 이중 접근구조 (Bimodal Approach of Multi-Sensor Integration for Telematics Application)

  • 김성백;이승용;최지훈;장병태;이종훈
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.525-528
    • /
    • 2003
  • In this paper, we present a novel idea to integrate low cost Inertial Measurement Unit(IMU) and Differential Global Positioning System (DGPS) for Telematics applications. As well known, low cost IMU produces large positioning and attitude errors in very short time due to the poor quality of inertial sensor assembly. To conquer the limitation, we present a bimodal approach for integrating IMU and DGPS, taking advantage of positioning and orientation data calculated from CCD images based on photogrammetry and stereo-vision techniques. The positioning and orientation data from the photogrammetric approach are fed back into the Kalman filter to reduce and compensate IMU errors and improve the performance. Experimental results are presented to show the robustness of the proposed method that can provide accurate position and attitude information for extended period for non-aided GPS information.

  • PDF

Long Short-Term Memory Network for INS Positioning During GNSS Outages: A Preliminary Study on Simple Trajectories

  • Yujin Shin;Cheolmin Lee;Doyeon Jung;Euiho Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권2호
    • /
    • pp.137-147
    • /
    • 2024
  • This paper presents a novel Long Short-Term Memory (LSTM) network architecture for the integration of an Inertial Measurement Unit (IMU) and Global Navigation Satellite Systems (GNSS). The proposed algorithm consists of two independent LSTM networks and the LSTM networks are trained to predict attitudes and velocities from the sequence of IMU measurements and mechanization solutions. In this paper, three GNSS receivers are used to provide Real Time Kinematic (RTK) GNSS attitude and position information of a vehicle, and the information is used as a target output while training the network. The performance of the proposed method was evaluated with both experimental and simulation data using a lowcost IMU and three RTK-GNSS receivers. The test results showed that the proposed LSTM network could improve positioning accuracy by more than 90% compared to the position solutions obtained using a conventional Kalman filter based IMU/GNSS integration for more than 30 seconds of GNSS outages.

천정부착 랜드마크와 광류를 이용한 단일 카메라/관성 센서 융합 기반의 인공위성 지상시험장치의 위치 및 자세 추정 (Pose Estimation of Ground Test Bed using Ceiling Landmark and Optical Flow Based on Single Camera/IMU Fusion)

  • 신옥식;박찬국
    • 제어로봇시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.54-61
    • /
    • 2012
  • In this paper, the pose estimation method for the satellite GTB (Ground Test Bed) using vision/MEMS IMU (Inertial Measurement Unit) integrated system is presented. The GTB for verifying a satellite system on the ground is similar to the mobile robot having thrusters and a reaction wheel as actuators and floating on the floor by compressed air. The EKF (Extended Kalman Filter) is also used for fusion of MEMS IMU and vision system that consists of a single camera and infrared LEDs that is ceiling landmarks. The fusion filter generally utilizes the position of feature points from the image as measurement. However, this method can cause position error due to the bias of MEMS IMU when the camera image is not obtained if the bias is not properly estimated through the filter. Therefore, it is proposed that the fusion method which uses the position of feature points and the velocity of the camera determined from optical flow of feature points. It is verified by experiments that the performance of the proposed method is robust to the bias of IMU compared to the method that uses only the position of feature points.

IMU 원신호 기반의 기계학습을 통한 충격전 낙상방향 분류 (Classification of Fall Direction Before Impact Using Machine Learning Based on IMU Raw Signals)

  • 이현빈;이창준;이정근
    • 센서학회지
    • /
    • 제31권2호
    • /
    • pp.96-101
    • /
    • 2022
  • As the elderly population gradually increases, the risk of fatal fall accidents among the elderly is increasing. One way to cope with a fall accident is to determine the fall direction before impact using a wearable inertial measurement unit (IMU). In this context, a previous study proposed a method of classifying fall directions using a support vector machine with sensor velocity, acceleration, and tilt angle as input parameters. However, in this method, the IMU signals are processed through several processes, including a Kalman filter and the integration of acceleration, which involves a large amount of computation and error factors. Therefore, this paper proposes a machine learning-based method that classifies the fall direction before impact using IMU raw signals rather than processed data. In this study, we investigated the effects of the following two factors on the classification performance: (1) the usage of processed/raw signals and (2) the selection of machine learning techniques. First, as a result of comparing the processed/raw signals, the difference in sensitivities between the two methods was within 5%, indicating an equivalent level of classification performance. Second, as a result of comparing six machine learning techniques, K-nearest neighbor and naive Bayes exhibited excellent performance with a sensitivity of 86.0% and 84.1%, respectively.

모바일 매핑시스템을 위한 멀티 센서 통합 및 동기화 구현 방안 연구 (Integration and Synchronization of Multi Sensors for Mobile Mapping System)

  • 박영무;이종기;성정곤;김병국
    • 한국공간정보시스템학회 논문지
    • /
    • 제6권1호
    • /
    • pp.51-58
    • /
    • 2004
  • 모바일 매핑시스템은 차량에 GPS(Global Positioning System), IMU(Inertial Measurement Unit), CCD 카메라 등을 탑재하고 위치 및 영상 정보를 취득하는 효율적인 방법이다. 모바일 매핑시스템은 도로 시설물 관리, 지도 갱신 등 다양한 분야에 이용되고 있다. 국외에서 개발된 모바일 매핑시스템은 각 센서의 통합 및 동기화 방안을 알 수 없으므로 업그레이드하거나 새로운 센서를 추가하기 어렵다. 본 연구에서는 모바일 매핑시스템의 개선 및 센서추가를 위해서 모바일 매핑시스템에 기본석으로 필요한 GPS, IMU, 그리고 CCD 카메라와 향후 추가될 센서인 레이저, 오도미터(Odometer) 등의 센서가 추가될 경우를 고려하여 멀티 센서 통합 및 동기화 구현 방안을 제시하였다. 또한 동기화에 필요한 각 센1서의 요구사항을 파악한 후 동기화 장비를 설계 및 제작하고 실험하였다.

  • PDF

간접 되먹임 필터를 이용한 관성센서 및 초음파 속도센서 기반의 수중 복합항법 알고리듬 (Underwater Hybrid Navigation Algorithm Based on an Inertial Sensor and a Doppler Velocity Log Using an Indirect Feedback Kalman Filter)

  • 이종무;이판묵;성우제
    • 한국해양공학회지
    • /
    • 제17권6호
    • /
    • pp.83-90
    • /
    • 2003
  • This paper presents an underwater hybrid navigation system for a semi-autonomous underwater vehicle (SAUV). The navigation system consists of an inertial measurement unit (IMU), and a Doppler velocity log (DVL), accompanied by a magnetic compass. The errors of inertial measurement units increase with time, due to the bias errors of gyros and accelerometers. A navigational system model is derived, to include the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 20. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors, and correct the state equation when the measurements are available. Simulation was performed with the 6-d.o,f equations of motion of SAUV, using a lawn-mowing survey mode. The hybrid underwater navigation system shows good tracking performance, by updating the error covariance and correcting the system's states with the measurement errors from a DVL, a magnetic compass, and a depth sensor. The error of the estimated position still slowly drifts in the horizontal plane, about 3.5m for 500 seconds, which could be eliminated with the help of additional USBL information.

A Fault Detection Method of Redundant IMU Using Modified Principal Component Analysis

  • Lee, Won-Hee;Park, Chan-Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권3호
    • /
    • pp.398-404
    • /
    • 2012
  • A fault detection process is necessary for high integrity systems like satellites, missiles and aircrafts. Especially, the satellite has to be expected to detect faults autonomously because it cannot be fixed by an expert in the space. Faults can cause critical errors to the entire system and the satellite does not have sufficient computation power to operate a large scale fault management system. Thus, a fault detection method, which has less computational burden, is required. In this paper, we proposed a modified PCA (Principal Component Analysis) as a powerful fault detection method of redundant IMU (Inertial Measurement Unit). The proposed method combines PCA with the parity space approach and it is much more efficient than the others. The proposed fault detection algorithm, modified PCA, is shown to outperform fault detection through a simulation example.

두 개의 초음파 거리계를 이용한 관성센서 기반의 의사 장기선 (Pseudo-LBL) 복합항법 알고리듬 (Pseudo Long Base Line (LBL) Hybrid Navigation Algorithm Based on Inertial Measurement Unit with Two Range Transducers)

  • 이판묵;전봉환;홍석원;임용곤;양승일
    • 한국해양공학회지
    • /
    • 제19권5호
    • /
    • pp.71-77
    • /
    • 2005
  • This paper presents an integrated underwater navigational algorithm for unmanned underwater vehicles, using additional two-range transducers. This paper proposes a measurement model, using two range measurements, to improve the performance of an IMU-DVL (inertial measurement unit - Doppler velocity log) navigation system for long-time operation of underwater vehicles, excluding DVL measurement. Extended Kalman filter was adopted to propagate the error covariance, to update the measurement errors, and to correct the state equation when the external measurements are available. Simulation was conducted with the 6-d.o.f nonlinear numerical model of an AUV in lawn-mowing survey mode, at current flaw, where the velocity information is unavailable. Simulations illustrate the effectiveness of the integrated navigation system, assisted by the additional range measurements without DVL sensing.

A Novel Calibration Method Research of the Scale Factor for the All-optical Atomic Spin Inertial Measurement Device

  • Zou, Sheng;Zhang, Hong;Chen, Xi-yuan;Chen, Yao;Fang, Jian-cheng
    • Journal of the Optical Society of Korea
    • /
    • 제19권4호
    • /
    • pp.415-420
    • /
    • 2015
  • A novel method to measure the scale factor for the all-optical atomic spin inertial measurement device (ASIMD) is demonstrated in this paper. The method can realize the calibration of the scale factor by a self-consistent method with small errors in the quiescent state. At first, the matured IMU (inertial measurement unit) device was fixed on an optical platform together with the ASIMD, and it has been used to calibrate the scale factor for the ASIMD. The results show that there were some errors causing the inaccuracy of the experiment. By the comparative analysis of theory and experiment, the ASIMD was unable to keep pace with the IMU. Considering the characteristics of the ASIMD, the mismatch between the driven frequency of the optical platform and the bandwidth of the ASIMD was the major reason. An all-optical atomic spin magnetometer was set up at first. The sensitivity of the magnetometer is ultra-high, and it can be used to detect the magnetization of spin-polarized noble gas. The gyromagnetic ratio of the noble gas is a physical constant, and it has already been measured accurately. So a novel calibration method for scale factor based on the gyromagnetic ratio has been presented. The relevant theoretical analysis and experiments have been implemented. The results showed that the scale factor of the device was $7.272V/^{\circ}/s$ by multi-group experiments with the maximum error value 0.49%.