• Title/Summary/Keyword: Inertial mass

Search Result 105, Processing Time 0.021 seconds

Influence of Spring Constant at Fixed End on Stability of Beck's Column with Tip Mass (固定端 의 스프링 상수 가 末端質量을 가진 Beck′s Column 의 安定性 에 미치는 영향)

  • 윤한익;김광식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.606-612
    • /
    • 1985
  • On the stability of the Beck's column with a tip mass, the influence of the characteristics of the springs at the fixed end of the column are studied. The equations of motion and boundary conditions of this system are established by using the Hamiton's principle. On the evaluation of the stability of the column, t he effect of the shear deformation and rotatory inertial is considered in calculation. For the maintenance of the stability of the column, it is proved that the constant of the translational spring at the fixed end must be very large while th magnitude of the constant of the rotational spring at the fixed end has no effect. When the constants of the springs at the fixed end are small, it is also proved that the influence of the moment of inertial of the tip mass on the stability of the column are decreased and for the translational spring the degree of the decrease is more and more. Therefore it is found that the characteristics of the springs at the fixed end are very effective elements for the stability of the column when the columns subjected to a compressive follower force are designed.

Spacecraft Moment of Inertial Estimation by Modified Rodrigues Parameters (Modified Rodrigues Parameter 기반의 인공위성 관성모멘트 추정 연구)

  • Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.243-248
    • /
    • 2010
  • This study addresses spacecraft moment of inertial estimation approach using Modified Rodrigues Parameters(MRP). The MRP offer advantage by avoiding singularity in Kalman Filter design for attitude determination caused by the norm constraint of quaternion parameters. Meanwhile, MRP may suffer singularity for large angular displacement, so that we designed appropriate reference attitude motion for accurate estimation. The proposed approach is expected to provide stable error covariance update with accurate spacecraft mass property estimation results.

Gravitational Wave Emission from Pulsars with Glitches

  • Kim, Jin-Ho;Lee, Hyung-Mok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.47.2-47.2
    • /
    • 2011
  • Gravitational waves from the pulsar glitch can be detected by next generation gravitational wave observatories. We investigate characteristics of the modes that can emit the gravitational waves excited by three different types of perturbations satisfying conservation of total rest mass and angular momentum. These perturbations mimic the pulsar glitch theories i.e., change of moment of inertia due to the star quakes or angular momentum transfer by vortex unpinning at crust-core interface. We carry out numerical hydrodynamic simulations using the pseudo-Newtonian method which makes weak field approximation for the dynamics, but taking all forms of energies into account to compute the Newtonian potential. Unlike other works, we found that the first and second strongest modes that give gravitational waves are $^2p_1$ and $H_1$ rather than$^2f$. We also found that vortex unpinning model excites the inertial mode in quadrupole moment quite effectively. The inertial mode may evolve into the non-axisymmetric r-mode.

  • PDF

A New Approach to Anti-Sway System Design Problem

  • Kim, Young-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1306-1311
    • /
    • 2004
  • We suggest a new type of swing motion control system for a crane system in which a small auxiliary mass is installed on the spreader. The actuator reacting against the auxiliary mass applies inertial control forces to the spreader of the container crane to reduce the swing motion in the desired manner. In this paper, as the basic and first step, we apply the $H_{\infty}$ control approach to anti-sway control system design problem. And, it will be shown that the proposed control strategy is useful and it can be easily applicable to the real world. So, in this study, we investigate usefulness of the proposed anti-sway system and evaluate system performance through simulation and experimental studies.

A Study on the Design of the Anti-Rolling Control System for a Ship (선박의 횡동용 방지 장치 개발에 관한 연구)

  • Kim, Young-Bok;Byun, Jung-Hoan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.438-444
    • /
    • 2001
  • In this paper, an actively controlled anti-rolling system is considered to reduced the rolling motion of the ship. In this control system, a small auxiliary mass is installed on the upper area of the ship, and the actuator is connected between the auxiliary mass and the ship. The actuator reacts against the auxiliary mass, applying inertial control corves to the ship to reduce the rolling motion in the desired manner. in this paper, we apply the PID controller to design the anit-rolling control system for the controlled hip. And the experimental result shows that the desirable control performance is achieved.

  • PDF

An Experimental Study on the Rolling Motion Control of a Ship Based on LMI Approach (LMI를 이용한 선박 횡동요 제어에 관한 실험적 연구)

  • 채규훈;김영복
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.60-66
    • /
    • 2003
  • In this paper, an actively controlled anti-rolling system is considered, in order to reduce the rolling motion of a ship. In this control system, a small auxiliary mass is installed on the upper area of the ship, and an actuator is connected between the auxiliary mass and the ship. The actuator reacts the auxiliary mass, applying inertial control forces to the ship to reduce the rolling motion in the desired manner. In this paper, we introduce LMI based H$_{\infty}$ control approach to design the anti-rolling control system for the controlled ship. And the experimental results show that the desirable control performance can be achieved.

An Experimental Study on the Development of the Anti-Rolling Control System for a Ship (선체 횡동요 방지 장치 개발을 위한 실험적 연구)

  • 김영복;변정환;양주호
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.43-48
    • /
    • 2000
  • In this paper, an actively controlled anti-rolling system is considered to reduce the rolling motion of the ship. In this control system, a small auxiliary mass is installed on the upper area of the ship, and actuator us connected between the auxiliary mass and a ship. The actuator reacts against the auxiliary mass, applying inertial control forces to the ship to reduce the rolling motion in the desired manner. In this paper, we apply the PID controller to design the anti-rolling control system for the controlled ship. And the experimental result shows that the desirable control performance is achieved.

  • PDF

Swing Motion Control System Design Based on Frequency-shaped LQ Control (주파수 의존형 최적 레귤이터에 의한 크레인 흔들림 제어계 설계)

  • Kim, Y.B.;Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.50-55
    • /
    • 2008
  • In general, the swing motion of the crane is controlled and suppressed by activating the trolley motion. In many papers reported by us, we suggested a new type of anti-sway control system of the crane. In the proposed control system, a small auxiliary mass(moving-mass) is installed on the spreader and the swing motion is controlled by moving the auxiliary mass. The actuator reaction against the auxiliary mass applies inertial control forces to the container in order to reduce the swing motion in the desired manner. Futhermore the measuring systems based on image sensor have been proposed also. To obtain the robustness for our control system, $H_{\infty}$ based control techniques and other approach have been applied to suppress swing motion. As well known, the robust control technologies based on $H_{\infty}$ control need complicated and difficult process. In the result, the obtained closed-loop system becomes to high order system which may give us many difficulties to apply it to the real plants. Therefore, we introduce an easy approach which is based on LQ control theory. In this approach, we introduce the frequency dependent weighting matrices which give the system filters to shape frequency characteristics of the controlled system and guarantee the control performance.

  • PDF

Measurement and Control of Swing Motion Using Image Sensor (이미지 센서를 이용한 크레인의 흔들림 계측 및 제어)

  • Kim, Y.B.;Kawai, H.;Choi, Y.W.;Lee, K.S.;Chae, G.H.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.103-108
    • /
    • 2007
  • In general, the swing motion of the crane is controlled and suppressed by activating the trolley motion. In many papers reported by us, we suggested a new type of anti-sway control system of the crane. In the proposed control system, a small auxiliary mass(moving-mass) is installed on the spreader and the swing motion is controlled by moving the auxiliary mass. The actuator reaction against the auxiliary mass applies inertial control forces to the container in order to reduce the swing motion in the desired manner. The measuring system is based on laser sensor or others. However it is not so useful in real world. Especially, in this paper, the image sensor is used to measures the motions of the spreader and the measured data are fed back to the controller in real time. The applied image processing technique is a kind of robust template matching method which is named Vector Code Correlation (VCC) and devised to consider the real environmental conditions. And the $H_{\infty}$ based control technique is applied to suppress swing motion of the crane. And the experimental result shows that the proposed measurement system based on image sensor and control system is useful and robust to disturbances.

  • PDF

Linearity and Nonlinearity of Rotor System Analysis (로터 시스템 회전운동 선형 및 비선형성)

  • Yun, Seong-Ho;Ren, Li-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.190-196
    • /
    • 2008
  • The dynamical rotor system is investigated through the derivation and formulations of the dynamic equation of the rotating system in terms of both inertial and fixed frame of the system as well as quaternion. The investigation is aimed at analyzing the dynamical rotating system precession speed. The resulting equations of motion consist of the consistent mass matrix and gyroscopic matrix. The formulation shows its features and difference between its linearity and nonlinearity.

  • PDF