• Title/Summary/Keyword: Inertial control

Search Result 447, Processing Time 0.023 seconds

Investigation on the performance of the six DOF C.G.S., Algeria, shaking table

  • Aknouche, Hassan;Bechtoula, Hakim;Airouche, Abdelhalim;Benouar, Djillali
    • Earthquakes and Structures
    • /
    • v.6 no.5
    • /
    • pp.539-560
    • /
    • 2014
  • Shaking tables are devices for testing structures or structural components models with a wide range of synthetic ground motions or real recorded earthquakes. They are essential tools in earthquake engineering research since they simulate the effects of the true inertial forces on the test specimens. The destructive earthquakes that occurred at the north part of Algeria during the period of 1954-2003 resulted in an initiative from the Algerian authorities for the construction of a shaking simulator at the National Earthquake Engineering Research Center, CGS. The acceleration tracking performance and specifically the inability of the earthquake simulator to accurately replicate the input signal can be considered as the main challenge during shaking table test. The objective of this study is to validate the uni-axial sinusoidal performances curves and to assess the accuracy and fidelity in signal reproduction using the advanced adaptive control techniques incorporated into the MTS Digital controller and software of the CGS shaking table. A set of shake table tests using harmonic and earthquake acceleration records as reference/commanded signals were performed for four test configurations: bare table, 60 t rigid mass and two 20 t elastic specimens with natural frequencies of 5 Hz and 10 Hz.

Improvement of Gesture Recognition using 2-stage HMM (2단계 히든마코프 모델을 이용한 제스쳐의 성능향상 연구)

  • Jung, Hwon-Jae;Park, Hyeonjun;Kim, Donghan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1034-1037
    • /
    • 2015
  • In recent years in the field of robotics, various methods have been developed to create an intimate relationship between people and robots. These methods include speech, vision, and biometrics recognition as well as gesture-based interaction. These recognition technologies are used in various wearable devices, smartphones and other electric devices for convenience. Among these technologies, gesture recognition is the most commonly used and appropriate technology for wearable devices. Gesture recognition can be classified as contact or noncontact gesture recognition. This paper proposes contact gesture recognition with IMU and EMG sensors by using the hidden Markov model (HMM) twice. Several simple behaviors make main gestures through the one-stage HMM. It is equal to the Hidden Markov model process, which is well known for pattern recognition. Additionally, the sequence of the main gestures, which comes from the one-stage HMM, creates some higher-order gestures through the two-stage HMM. In this way, more natural and intelligent gestures can be implemented through simple gestures. This advanced process can play a larger role in gesture recognition-based UX for many wearable and smart devices.

Orbital Parameters Modeling of High Resolution Satellite Imagery for Mapping Applications (매핑을 위한 고해상 위성영상의 궤도요소 모델링)

  • 유환희;성재열;김동규;진경혁
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.4
    • /
    • pp.405-414
    • /
    • 2000
  • A new generation of commercial satellites like IKONOS, SPOT-5 and OrbView-3,4 will have improved features, especially an higher geometric resolution with a better dynamic radiometric range. In addition high precision orbital position and attitude data will be provided by the on-board GPS receivers, IMU(Inertial Measurement Units) and star trackers. This additional information allows for reducing the number of ground control points. Furthermore this information enables direct georeferencing of imagery without ground control points. In our work mathematical models for calculating the satellite orbital parameters of SPOT-3 and KOMPSAT-1 were developed and can be easily extended to process images from other high resolution imaging systems as they become available.

  • PDF

Performance Analysis and Development of the Navigation System for Pipeline Inspection Gauge (배관 진단 시스템을 위한 항법 시스템 개발과 성능 분석)

  • Jin Yong;Park Chan Gook;Woo Rho Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.1 s.17
    • /
    • pp.52-58
    • /
    • 2002
  • The PIG(Pipeline Inspection Gauge) is inserted in the pipeline and stores data of pipeline. In order to investigate the status of pipeline, a lot of sensors such as caliper, pressure, IMU and odometer are used. In this paper, the navigation storage data system for PIG is developed. It has master/slave structure for a real time operation. The master system stores data, while the slave system acquire the data from sensors. The performance of the developed system is verified by pull rig test.

  • PDF

A Study On Missile Flight Simulation Method Using the Built-in Memory of Aviation Control Unit (비행제어장치 내장 메모리를 활용한 유도탄 모의비행기법 연구)

  • Kim, Tae-Hoon;Lee, Sang-Hoon;Gong, Min-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.536-544
    • /
    • 2019
  • During the assembly and function inspection of missile system, flight simulation process is required. In the conventional flight simulation check of missiles, an inertial navigation system simulator was used to transmit the navigation output data acquired in HILS. There are several disadvantages in terms of check configuration complexity and data synchronization when using the simulator. So we proposed a new flight simulation method that utilizes the nonvolatile built-in memory of the aviation control unit. The data processing procedure and operation procedure of the proposed method for type I and type II missiles are presented. And we analyzed the causes of the difference between proposed method result and the HILS result for type II missile. By comparing the results obtained by the experiments using the proposed method with the results of HILS, the validity of proposed method was confirmed.

Change of Balance Ability in Subjects with Pain-Related Temporomandibular Disorders

  • Ja Young Kim;Sang Seok Yeo
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.6
    • /
    • pp.321-325
    • /
    • 2022
  • Purpose: Temporomandibular disorder (TMD) is a condition defined as pain and dysfunction of temporomandibular joints and masticatory muscles. Abnormal interconnections between temporomandibular muscles and cervical spine structures can cause the changes of postural alignment and balance ability. The aim of this study was to investigate changes in static balance ability in subjects with painrelated TMD. Methods: This study conducted on 25 subjects with TMD and 25 control subjects with no TMD. Pressure pain thresholds (PPTs) of the masseter and temporalis muscles were measured using a pressure algometer. Static balance ability was assessed during one leg standing using an Inertial Measurement Unit (IMU) sensor. During balance task, the IMU sensors measured motion and transfer movement data for center of mass (COM) motion, ankle sway and hip sway. Results: PPTs of masseter and temporalis muscles were significantly lower in the TMD group than in the control group (p<0.05). One leg standing, hip sway, and COM sway results were significantly greater in the TMD group (p<0.05), but ankle sways were not different between group. Conclusion: We suggest pain-related TMD is positively related to reduced PPTs of masticatory muscles and to static balance ability. These results should be considered together with global body posture when evaluating or treating pain-related TMD.

Optimal Reserve Allocation to Maximize Kinetic Energy in a Wind Power Plant

  • Yoon, Gihwan;Lee, Hyewon;Lee, Jinsik;Yoon, Gi-Gab;Park, Jong Keun;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1950-1957
    • /
    • 2015
  • Modern wind generators (WGs) are forced or encouraged to participate in frequency control in the form of inertial and/or primary control to improve the frequency stability of power systems. To participate in primary control, WGs should perform deloaded operation that maintains reserve power using speed and/or pitch-angle control. This paper proposes an optimization formulation that allocates the required reserve to WGs to maximize the kinetic energy (KE) stored in a wind power plant (WPP). The proposed optimization formulation considers the rotor speed margin of each WG to the maximum speed limit, which is different from each other because of the wake effects in a WPP. As a result, the proposed formulation allows a WG with a lower rotor speed to retain more KE in the WPP. The performance of the proposed formulation was investigated in a 100-MW WPP consisting of 20 units of 5-MW permanent magnet synchronous generators using an EMTP-RV simulator. The results show that the proposed formulation retains the maximum amount of KE with the same reserve and successfully increases the frequency nadir in a power system by releasing the stored KE in a WPP in the case of a disturbance.

3D Numerical Simulation of Ice Accretion on a Rotating Surface

  • Mu, Zuodong;Lin, Guiping;Bai, Lizhan;Shen, Xiaobin;Bu, Xueqin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.352-364
    • /
    • 2017
  • A novel 3D mathematical model for water film runback and icing on a rotating surface is established in this work, where both inertial forces caused by the rotation and shear forces due to the air flow are taken into account. The mathematical model of the water film runback and energy conservation of phase transition process is established, with a cyclical average method applied to simulate the unsteady parameters variation at angles of attack. Ice accretion on a conical spinner surface is simulated and the results are compared with the experimental data to validate the presented model. Then Ice accretion on a cowling surface is numerically investigated. Results show that a higher temperature would correspond to a larger runback ice area and thinner ice layer for glaze ice. Rotation would enhance the icing process, while it would not significantly affect the droplet collection efficiency for an axi-symmetric surface. In the case at angle of attack, the effect of rotation on ice shape is appreciable, ice would present a symmetric shape, while in a stationary case the shape is asymmetric.

A Study on Robust and Precise Position Control of PMSM under Disturbance Variation (외란의 변화가 있는 PMSM의 강인하고 정밀한 위치 제어에 대한 연구)

  • Lee, Ik-Sun;Yeo, Won-Seok;Jung, Sung-Chul;Park, Keon-Ho;Ko, Jong-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1423-1433
    • /
    • 2018
  • Recently, a permanent magnet synchronous motor of middle and small-capacity has high torque, high precision control and acceleration / deceleration characteristics. But existing control has several problems that include unpredictable disturbances and parameter changes in the high accuracy and rigidity control industry or nonlinear dynamic characteristics not considered in the driving part. In addition, in the drive method for the control of low-vibration and high-precision, the process of connecting the permanent magnet synchronous motor and the load may cause the response characteristic of the system to become very unstable, to cause vibration, and to overload the system. In order to solve these problems, various studies such as adaptive control, optimal control, robust control and artificial neural network have been actively conducted. In this paper, an incremental encoder of the permanent magnet synchronous motor is used to detect the position of the rotor. And the position of the detected rotor is used for low vibration and high precision position control. As the controller, we propose augmented state feedback control with a speed observer and first order deadbeat disturbance observer. The augmented state feedback controller performs control that the position of the rotor reaches the reference position quickly and precisely. The addition of the speed observer to this augmented state feedback controller compensates for the drop in speed response characteristics by using the previously calculated speed value for the control. The first order deadbeat disturbance observer performs control to reduce the vibration of the motor by compensating for the vibrating component or disturbance that the mechanism has. Since the deadbeat disturbance observer has a characteristic of being vulnerable to noise, it is supplemented by moving average filter method to reduce the influence of the noise. Thus, the new controller with the first order deadbeat disturbance observer can perform more robustness and precise the position control for the influence of large inertial load and natural frequency. The simulation stability and efficiency has been obtained through C language and Matlab Simulink. In addition, the experiment of actual 2.5[kW] permanent magnet synchronous motor was verified.

Error Analysis of Reaction Wheel Speed Detection Methods (반작용휠 속도측정방법의 오차 분석)

  • Oh, Shi-Hwan;Lee, Hye-Jin;Lee, Seon-Ho;Yong, Ki-Lyuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.481-490
    • /
    • 2008
  • Reaction wheel is one of the actuators for spacecraft attitude control, which generates torque by changing an inertial rotor speed inside of the wheel. In order to generate required torque accurately and estimate an accurate angular momentum, wheel speed should be measured as close to the actual speed as possible. In this study, two conventional speed detection methods for high speed motor with digital tacho pulse (Elapsed-time method and Pulse-count method) and their resolutions are analyzed. For satellite attitude maneuvering and control, reaction wheel shall be operated in bi directional and low speed operation is sometimes needed for emergency case. Thus the bias error at low speed with constant acceleration (or deceleration) is also analysed. As a result, the speed detection error of elapsed-time method is largely influenced upon the high-speed clock frequency at high speed and largely effected on the number of tacho pulses used in elapsed time calculation at low speed, respectively.