• Title/Summary/Keyword: Inertia Mass

Search Result 336, Processing Time 0.025 seconds

High Frequency Approximation for Earthquake-Induced Hydrodynamic Loads in Rigid Stroage Tank (고주파수 근사해를 적용한 유체저장탱크에 작용하는 지진하중 산정)

  • 류정선;양우식
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.1-8
    • /
    • 1999
  • The present paper describes an approximation for estimation of earthquake-induced hydrodynamic loads in rigid storage tank which accelerated in horizontal direction. The storage tank is vertically cylindrical, and the sectional shape may be circular, rectangular or irregular. The solution for harmonic excitation is studied based on velocity potential theory, and then the time domain solution for earthquake is obtained by using design response spectrum. As a result, earthquake load is influenced primarily by the inertia force of high frequency effective mass of the storage tank, responding to the characteristics of design response spectrum, tank sectional shape, and the ratio of tank base length to depth. Earthquake-induced hydrodynamic loads in rigid storage tank can be effectively obtained by using the high frequency approximation method in case of quite large, or small ratio of the tank base length to water depth.

  • PDF

An Investigation into the Hull-Girder Vibration Analysis of RO/RO Car/Truck Carriers (자동차운반선(自動車運搬船) 선체저차진동(船體低次振動)의 해석(解析))

  • K.C.,Kim;D.S.,Cho;J.H.,Chung;J.W.,Kang;S.J.,Moon;J.H.,Woo
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.35-44
    • /
    • 1990
  • Most of the medium-size ships are powered by large-bore, long-stroke, slow-speed and two-stroke diesel engines in order to improve the fuel efficiency. Such a propulsion plant develops low-frequency excitation forces/moments of significant magnitude. A RO/RO car/truck carrier is also one of the cases. In this paper, the rational methods for analysis of vertical and coupled horizontal-torsional vibrations are presented. Taking account of unusual characteristics of the hull form and structural systems, the emphasis is put on modelling methods based on beam analogy, calculation of system parameters such as added mass and its center, polar added-mass moment of inertia, shear coefficient of hull sections and coupling degree in antisymmetric modes, and modal analysis of forced vibrations.

  • PDF

Development of a Fission Product Transport Module Predicting the Behavior of Radiological Materials during Severe Accidents in a Nuclear Power Plant

  • Kang, Hyung Seok;Rhee, Bo Wook;Kim, Dong Ha
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.237-244
    • /
    • 2016
  • Background: Korea Atomic Energy Research Institute is developing a fission product transport module for predicting the behavior of radioactive materials in the primary cooling system of a nuclear power plant as a separate module, which will be connected to a severe accident analysis code, Core Meltdown Progression Accident Simulation Software (COMPASS). Materials and Methods: This fission product transport (COMPASS-FP) module consists of a fission product release model, an aerosol generation model, and an aerosol transport model. In the fission product release model there are three submodels based on empirical correlations, and they are used to simulate the fission product gases release from the reactor core. In the aerosol generation model, the mass conservation law and Raoult's law are applied to the mixture of vapors and droplets of the fission products in a specified control volume to find the generation of the aerosol droplet. In the aerosol transport model, empirical correlations available from the open literature are used to simulate the aerosol removal processes owing to the gravitational settling, inertia impaction, diffusiophoresis, and thermophoresis. Results and Discussion: The COMPASS-FP module was validated against Aerosol Behavior Code Validation and Evaluation (ABCOVE-5) test performed by Hanford Engineering Development Laboratory for comparing the prediction and test data. The comparison results assuming a non-spherical aerosol shape for the suspended aerosol mass concentration showed a good agreement with an error range of about ${\pm}6%$. Conclusion: It was found that the COMPASS-FP module produced the reasonable results of the fission product gases release, the aerosol generation, and the gravitational settling in the aerosol removal processes for ABCOVE-5. However, more validation for other aerosol removal models needs to be performed.

Analysis of Dynamic Behavior of a Single Pile in Dry Sand by 1g Shaking Table Tests (1g 진동대 실험을 통한 건조사질토에 근입된 단독말뚝의 동적 거동 분석)

  • Lim, Hyun-Sung;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.17-28
    • /
    • 2017
  • This paper presents the investigation of dynamic behavior of a single pile in dry sand based on 1g shaking table tests. The natural frequency of soil-pile system was measured, and then a range of loading frequency was determined based on the natural frequency. Additionally, the studies were performed by controlling loading accelerations, pile head mass and connectivity conditions between pile and cap. Based on the results obtained, relatively larger pile head displacement and bending moment occur when the loading frequency is larger than the natural frequency of soil-pile system. However, the slope of the p-y curve is smaller in the similar loading frequency. Also, it was found that inertia force like input acceleration and pile head mass, and relation of the natural frequency of soil-pile system and input frequency have a great influence on the slope of dynamic p-y curve, while pile head conditions don't.

Free Vibration Analysis of a Two-Layered Structure - Formulation by the Transfer Infiuence Coefficient Method - (2층 구조물의 자유진동해석 - 전달영향계수법에 의한 정식화 -)

  • Mun, Deok-Hong;Yeo, Dong-Jun;Kim, Won-Cheol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.4
    • /
    • pp.303-312
    • /
    • 1991
  • This paper describes the general formulation for the in-plane flexural free vibration analysis of two layered structure by the transfer influence coefficient method. The structure is regared as a distributed mass system with lumped mass and inertia moments, massless linear and rotational springs, and joints elements of releases and rolls at which the displacements are discontinuous in each layer. The results of the simple numerical examples on a personal computer demonstrate the validity of the present method, that is, the numerical high accuracy, the high speed, the flexibility for programming of the present algorithm, compared with the transfer matrix method.

  • PDF

Investigation of Transient Performance of An Auxiliary Power Unit Microturbine Engine (보조동력용 마이크로터빈 엔진에 대한 과도성능 해석)

  • Son, Ho-Jae;Kim, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.20-28
    • /
    • 2007
  • The easiest way to see the phenomena of compressor surge is to show the static and dynamic operation characteristic on the map. Its operation zone will be restricted by the surge limit and, static and transient process must have some margin for it. Effect of rotor moment of inertia, air/gas volumes and heat transfer are factors to cause the transition from the static line. In case a large volume such as heat exchanger exists in the system it will exert a substantial influence to dynamic characteristics. In the present paper, influence of air volume bled from the compressor exit on transient process is investigated with an example of an auxiliary power unit micro-turbine engine. Turbine mass, pressure ratio, rotation speed, power and moment are calculated based on mass and work conservation. Result from the present study can give guidance to design the control system. A computer program is developed to calculate the dynamic process using the MathCAD commercial software.

Impact of spar-nacelle-blade coupling on the edgewise response of floating offshore wind turbines

  • Dinh, Van-Nguyen;Basu, Biswajit;Nielsen, Soren R.K.
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.231-253
    • /
    • 2013
  • The impact of spar-nacelle-blade coupling on edgewise dynamic responses of spar-type floating wind turbines (S-FOWT) is investigated in this paper. Currently, this coupling is not considered explicitly by researchers. First of all, a coupled model of edgewise vibration of the S-FOWT considering the aerodynamic properties of the blade, variable mass and stiffness per unit length, gravity, the interactions among the blades, nacelle, spar and mooring system, the hydrodynamic effects, the restoring moment and the buoyancy force is proposed. The aerodynamic loads are combined of a steady wind (including the wind shear) and turbulence. Each blade is modeled as a cantilever beam vibrating in its fundamental mode. The mooring cables are modeled using an extended quasi-static method. The hydrodynamic effects calculated by using Morison's equation and strip theory consist of added mass, fluid inertia and viscous drag forces. The random sea state is simulated by superimposing a number of linear regular waves. The model shows that the vibration of the blades, nacelle, tower, and spar are coupled in all degrees of freedom and in all inertial, dissipative and elastic components. An uncoupled model of the S-FOWT is then formulated in which the blades and the nacelle are not coupled with the spar vibration. A 5MW S-FOWT is analyzed by using the two proposed models. In the no-wave sea, the coupling is found to contribute to spar responses only. When the wave loading is considered, the coupling is significant for the responses of both the nacelle and the spar.

Equivalent Model Dynamic Analysis of Main Wing Assembly for Optionally Piloted Personal Air Vehicle (자율비행 개인항공기용 주익 조립체 등가모델 동특성 해석)

  • Kim, Hyun-gi;Kim, Sung Jun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.72-79
    • /
    • 2021
  • In this study, as part of the development of an autonomous flying personal aircraft, an equivalent model of the main wing assembly of an Optionally Piloted Personal Air Vehicle (OPPAV) was developed. Reliability of the developed equivalent model was verified by eigenvalue analysis. The main wing assembly consisted of a main wing, an inboard pod, and an outboard pod. First, for developing an equivalent model of each component, components to produce the equivalent model were divided into several sections. Nodes were then created on the axis of the equivalent model at both ends of each section. In addition, static analysis with unit force and unit moment was performed to calculate the deformation or the amount of rotation at the node to be used in the equivalent model. Equivalent axial, bending, and torsional stiffness of each section were calculated by applying the beam theory. Once the equivalent stiffness of each section was calculated, information of a mass and moment of inertia for each section was entered by creating a lumped mass in the center of each section. An equivalent model was developed using beam element. Finally, the reliability of the developed equivalent model was verified by comparison with results of mode analysis of the fine model.

Flow-Field Analysis for Designing Bipolar Plate Patterns in a Proton Exchange Membrane Fuel Cell (연료전지 분리판의 형상설계를 위한 유동해석)

  • Park, Jeong-Seon;Jeong, Hye-Mi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1201-1208
    • /
    • 2002
  • A numerical flow-field analysis is performed to investigate flow configurations in the anode, cathode and cooling channels on the bipolar plates of a proton exchange membrane fuel cell (PEMFC). Continuous open-faced flow channels are formed on the bipolar plate surface to supply hydrogen, air and water. In this analysis, two types of channel pattern are considered: serpentine and spiral. The averaged pressure distribution and velocity profiles of the hydrogen, air and water channels are calculated by two-dimensional flow-field analysis. The equations for the conservation of mass and momentum in the two-dimensional fluid flow analysis are slightly modified to include the characteristics of the PEMFC. The analysis results indicate that the serpentine flow-fields are locally unstable (because two channels are cross at right angles). The spiral flow-fields has more stable than the serpentine, due to rotational fluid-flow inertia forces. From this study, the spiral channel pattern is suggested for a channel pattern of the bipolar plate of the PEMFC to obtain better performance.

A Second Order Sliding Mode Control of Container Cranes with Unknown Payloads and Sway Rates (미지의 부하와 흔들림 각속도를 갖는 컨테이너 크레인의 2차 슬라이딩 모드 제어)

  • Baek, Woon-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.145-149
    • /
    • 2015
  • This paper introduces a sway suppression control for container cranes with unknown payloads and sway rates. With no priori knowledge concerning the magnitude of payload mass and sway rate, the proposed control maintains superior sway suppressing and trolley positioning against external disturbances. The proposed scheme combines a second order sliding mode control and an adaptive control to cope with unknown payloads. A second order sliding mode control without feedback of the sway rate is first designed, which is based on a class of feedback linearization methods for stabilization of the under-actuated sway dynamics of the container. Under applicable restrictions of the magnitude of payload inertia and sway rate, a linear regression model is obtained, and an adaptive control with a payload estimator is then designed, which is based on Lyapunov stability methods for the fast attenuation of trolley oscillations in the vicinity of the target position. The asymptotic stability of the overall closed-loop system is assured irrespective of variations of rope length. Simulation are shown in the existence of initial sway and external wind disturbances.