• Title/Summary/Keyword: Inertia Mass

Search Result 338, Processing Time 0.022 seconds

A Cultural Reading on Tapgol Park (탑골공원의 문화적 해석)

  • Park, Seung-Jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.6
    • /
    • pp.1-16
    • /
    • 2003
  • This study seeks to find new strategies for the development of Tapgol Park and to identify Programs to promote this development. In addition, the study specifies the purpose and meaning of these efforts by revealing social aspects not apparent in the physical form of the site, and reading how these aspects influenced the development of Tapgol Park Because the focus of the study lies in reading cultural aspects of the site which have to be understood within the context of their social circumstances, the study drew materials from mass media such as newspapers and literary magazines, which best reflect these social aspects. Interpreting the over 100 you history of Tapgol Park in a cultural context, the study found a meaningful suggestion that such a small urban place located in a city forms a cultural identity in the course of communicating with its surrounding social situations. The change in the identity of Tapgol Park has been sensitive to changing social circumstances rather than the physical structure of the space. The original function of Tapgol Park as a traditional city park has gradually changed towards strengthening social functions, much like the character of an urban plaza. In the process of change the park developed a unique culture. This park culture, however, came not from the original design but from its close interactions with social circumstances changing over time. At the same time, the change in identity seen in Tapgol Park has not been fresh formed. It can be said that the inertia came into light with the potential powers under the place over the long history having been combined into the then social circumstances. In early 2002, the park re-opened, refurbished as one of the relics of the March 1st Movement. Investigating how cultural inertias that have been developing in various forms to date will change and be maintained in this new paradigm is an important assignment for researchers.

Optimal Design of Magnetically Levitated Flywheel Energy Storage System Based on System Stability Using Rigid-Body Model (강체모델 기반 시스템 안정성을 고려한 자기부상 플라이휠 에너지 저장장치의 최적 설계)

  • Kim, Jung-Wan;Yoo, Seong-Yeol;Bae, Yong-Chae;Noh, Myoung-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.283-289
    • /
    • 2010
  • Owing to the increasing worldwide interest in green technology and renewable energy sources, flywheel energy storage systems (FESSs) are gaining importance as a viable alternative to traditional battery systems. Since the energy storage capacity of an FESS is proportional to the principal mass-moment of inertia and the square of the running speed, a design that maximizes the principal inertia while operatingrunning at the highest possible speed is important. However, the requirements for the stability of the system may impose a constraint on the optimal design. In this paper, an optimal design of an FESS that not only maximizes the energy capacity but also satisfies the requirements for system stability and reduces the sensitivity to external disturbances is proposed. Cross feedback control in combination with a conventional proportional-derivative (PD) controller is essential to reduce the effect of gyroscopic coupling and to increase the stored energy and the specific energy density.

Performance enhancement of base-isolated structures on soft foundation based on smart material-inerter synergism

  • Feng Wang;Liyuan Cao;Chunxiang Li
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • In order to enhance the seismic performance of base-isolated structures on soft foundations, the hybrid system of base-isolated system (BIS) and shape memory alloy inerter (SMAI), referred to as BIS+SMAI, is for the first time here proposed. Considering the nonlinear hysteretic relationships of both the isolation layer and SMA, and soil-structure interaction (SSI), the equivalent linearized state space equation is established of the structure-BIS+SMAI system. The displacement variance based on the H2 norm is then formulated for the structure with BIS+SMAI. Employing the particle swarm optimization, the optimization design methodology of BIS+SMAI is presented in the frequency domain. The evolvement rules of BIS+SMAI in the effectiveness, robustness, SMA driving force, inertia force, stroke, and damping enhancement effect are revealed in the frequency domain through changing the inerter-mass ratio, structural height, aspect ratio, and relative stiffness ratio between the soil and structure. Meanwhile, the validation of BIS+SMAI is conducted using real earthquake records. Results demonstrate that BIS+SMAI can effectively reduce the isolation layer displacement. The inerter can significantly increase the hysteretic displacement of SMA and thus enhance its energy dissipation capacity, implying that BIS+SMAI has better effectiveness than BIS+SMA. Although BIS+SMAI and BIS+ tuned inerter damper (TID) have practically the same effectiveness, BIS+SMAI has the lower optimum damping, significantly smaller inertia force, and higher robustness to perturbations of the optimum parameters. Therefore, BIS+SMAI can be used as a more engineering realizable hybrid system for enhancing the performance of base-isolated structures in soft soil areas.

A Study on the Design of Horizontal Traverse Units in an Automatic Object Changer Unit to Establish a Flexible Production System (Part 2) (유연생산 시스템 구축을 위한 공작물 자동교환 유닛의 수평 이송 기구 설계에 관한 연구(파트 2))

  • Park, Hoo-Myung;Sung, Jae-Kyung;Lee, Yong-Joong;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.52-59
    • /
    • 2008
  • The objective of this study is to develop an automatic object changer unit to improve processing problems existed in the conventional horizontal machining center. To achieve this goal, this study designed a horizontal transfer as the second project continued to the first project that designed a upward and downward traverse unit. A horizontal traverse unit shows a symmetric structure and consists of frame, which consists of four unit tools, motor and reducer, which are fixed at a frame, operation unit with pinions, first traverse unit, and second traverse unit. Constraint conditions based on the operation mechanism with these elements were configured and obtained following results after modeling a model for a traverse motor. In the kinematic expression of sliding motion with one degree of freedom, the sliding motion is constrained. Also, the rack 3 installed at a frame is used to configure possible kinematic constraint conditions of the rack 2 according to the rolling motion of the pinion 2 in the first traverse unit. In addition, the moment of inertia that is a type of kinetic energy in a converted horizontal traverse unit in the side of the reducer can be applied to introduce the moment of inertia of a converted horizontal traverse unit in the side of the reducer by using the sum of kinetic energy in the rack and pinion, which is a part of the horizontal traverse unit. Also, the equation of motion of the converted upward and downward traverse unit in the side of the motor using the equation of motion of the motor. Furthermore, the horizontal traverse unit predetermines the mass of the first and second traverse unit and applied load including the radius and reduction ratio of the pitch circle in the pinion 1 and applied load to the rack 2. Then, a proper motor can be determined using several parameters in the upward and downward traverse unit in order to verify such predetermined specifications. In future studies later this study, a simulation that verifies the results of the previous two stages of studies using a finite element method.

  • PDF

A General Formula for Calculating the Value of Transverse Moment of Inertia by Observing the Roll Motion of Ships (횡요상태 관측에 의한 선체 횡관성모멘트 값의 도출을 위한 일반식)

  • Choi, Soon-Man
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.538-542
    • /
    • 2015
  • The transverse moment of inertia is an indispensable factor in analyzing the roll motion characteristics of ships and the calculating method needs to be based on the more reasonable theories when deciding the value as the results and reliability of analysis could be much affected by the correctness. However, the mass distribution and shape of hulls are quite complicated and give much difficulties in case of calculating the value directly from the ship design data, furthermore even acquiring the detailed design data for calculation is almost impossible. Therefore some simpler ways are practically adopted in the assumption that the gyradius of roll moment can be decided by a given ratio and hull width. It is well known that the responses of the free roll decay are varied according to the value of roll moment in view of roll period and amplitude decay ratio, so that the general formula to get the moment value can be derived also from the observation of roll decay responses. This study presents how the roll period and decay ratio are interrelated each other from the roll motion characteristics with suggesting a general formula to be able to calculate roll moment from it. Finally, the obtained general formula has been applied to a ship data to check the resultant characteristics through analyzing graphs and showed that the roll moment becomes more accurate when rolling period and decay ratio are considered together in calculation.

Rotordynamic design of a fuel pump and turbine for a 75 ton liquid rocket engine (75톤급 액체로켓 엔진용 연료펌프/터빈 회전체 동역학 설계)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Yoon, Suk-Hwan;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.201-208
    • /
    • 2007
  • A fuel pump and turbine rotordynamic design is performed for a 75 ton thrust liquid rocket engine. A distance from the rear bearing to the turbine was considered as a design parameter for load distribution of the bearings. Asynchronous eigenvalue analysis was performed as a function of rotating speeds, turbine mass and bearing stiffness to investigate critical speed of the fuel pump and turbine. From the numerical analysis, it is found that the effect of the front bearing stiffness is negligible in the critical speed due to the large mass moment of inertia of the turbine. With the rear bearing stiffness over $2{\times}10^{8}N/m$ and the turbine mass below 20 kg, the critical speed of the fuel pump and turbine in long shaft case is at least 70 % higher than the operating speed 11,000 rpm.

  • PDF

Free Vibration of Tapered Tube (선형변단면관(線形變斷面管)의 자유진동)

  • Lee, Yong Woo;Min, Kyung Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.45-54
    • /
    • 1991
  • The closed forms of mass matrix with rotational inertia matrix are developed for free vibration analysis in space structures containing linearing tapered members with cross section of thin-walled tube. The exact displacement functions are used for formulating mass matrix. The very small slopes of the tapered member are used in usual practice, such that the series expansion forms of these are also developed to avoid numerical failure in vibration analysis. Significant improvements of accuracy and efficiency of free vibration analysis are achieved by using the mass matrices developed in this study. Frequencies of free vibration of tapered members are compared with solutions based upon stepped representation of beam element.

  • PDF

Sideways Overturning Analysis of Forwarder Using a Multibody Dynamics Analysis Program (다물체 동력학 해석 프로그램을 이용한 포워더의 횡전도 분석)

  • 박현기;김경욱;김재원;송태영;박문섭;조구현
    • Journal of Biosystems Engineering
    • /
    • v.27 no.3
    • /
    • pp.185-194
    • /
    • 2002
  • The objective of this study was to analyze a stability of sideways overturning of a forwarder developed by the Forestry Research Institute. The stability analysis was conducted using a multibody dynamic analysis program. VisualNastran Desktop. A solid model of the forwarder was constructed and its physical properties such as mass, mass center and mass moment of inertia were determined on 3D CAD modeler of the Solid Edge 8.0. 3D simulations of sideways overturning of the forwarder were also performed on the Visual Nastran using the solid model when it traveled across the slope and traversed over an up-hill side obstacle. Stability comparison between a bogie-wheeled and a 6-wheeled forwarders was also made and found that the bogie-wheeled forwarder was more stable than the 6-wheeled one on slopes. The safety speeds of the forwarder predicted by the simulation under various conditions can be used as a guideline for safe operations of forwarders in mountainous area. The technique of using a solid model for the sability analysis can also be applied successfully to other vehicles like agricultural tractors, loaders and construction equipments.

Finite Element Analysis of Continuous Beam Vibration under Pedestrian Loading Considering Moving Mass Effect (이동 질량 효과를 고려한 연속 보의 보행하중 진동 유한요소 해석)

  • Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.309-316
    • /
    • 2022
  • This study proposes a finite element analysis method that can analyze the vibration of a beam by considering the inertia effect of moving masses in a vertical direction. The proposed method is effective when a precise interaction analysis is not required. The inertial effects of the moving masses are included in the equation of motion, and the interaction forces between the masses and the beam are considered only as external loads. Time domain analyses were performed using Abaqus, a general-purpose finite element analysis software, and an implementation method using multi-point constraints wais presented to link the displacements of the beam element nodes and moving rigid masses. The proposed method was verified by comparing its solution with that obtained using an existing analytical method, and the analysis results for continuous beam vibrations under dynamic gait loadings were used to examine the mass effect of pedestrians.

Modeling and experimental verification of phase-control active tuned mass dampers applied to MDOF structures

  • Yong-An Lai;Pei-Tzu Chang;Yan-Liang Kuo
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.281-295
    • /
    • 2023
  • The purpose of this study is to demonstrate and verify the application of phase-control absolute-acceleration-feedback active tuned mass dampers (PCA-ATMD) to multiple-degree-of-freedom (MDOF) building structures. In addition, servo speed control technique has been developed as a replacement for force control in order to mitigate the negative effects caused by friction and inertia. The essence of the proposed PCA-ATMD is to achieve a 90° phase lag for a structure by implementing the desired control force so that the PCA-ATMD can receive the maximum power flow with which to effectively mitigate the structural vibration. An MDOF building structure with a PCA-ATMD and a real-time filter forming a complete system is modeled using a state-space representation and is presented in detail. The feedback measurement for the phase control algorithm of the MDOF structure is compact, with only the absolute acceleration of one structural floor and ATMD's velocity relative to the structure required. A discrete-time direct output-feedback optimization method is introduced to the PCA-ATMD to ensure that the control system is optimized and stable. Numerical simulation and shaking table experiments are conducted on a three-story steel shear building structure to verify the performance of the PCA-ATMD. The results indicate that the absolute acceleration of the structure is well suppressed whether considering peak or root-mean-square responses. The experiment also demonstrates that the control of the PCA-ATMD can be decentralized, so that it is convenient to apply and maintain to real high-rise building structures.