• Title/Summary/Keyword: Inert gas plasma

Search Result 31, Processing Time 0.027 seconds

Two-dimensional Numerical Simulation of a Pulsed Heat Source High Temperature Inert Gas Plasma MHD Electrical Power Generator

  • Matsumoto, Masaharu;Murakami, Tomoyuki;Okuno, Yoshihiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.589-596
    • /
    • 2008
  • Performance of a pulsed heat source high temperature inert gas plasma MHD electrical power generator, which can be one of the candidates of space-based laser-to-electrical power converter, is examined by a time dependent two dimensional numerical simulation. In the present MHD generator, the inert gas is assumed to be ideally heated to about $10^4K$ pulsed-likely within short time(${\sim}1{\mu}s$) in a stagnant energy input volume, and the energy of high temperature inert gas is converted to the electricity with the medium of pure inert gas plasma without seeding. The numerical simulation results show that an enthalpy extraction ratio(=electrical output energy/pulsed heat energy) of several tens of % can be achieved, which is the same level as the conventional seeded non-equilibrium plasma MHD generator. Although there still exist many phenomena to be clarified and many problems to be overcome in order to realize the system, the pulsed heat source high temperature inert gas MHD generator is surely worth examining in more detail.

  • PDF

The Effect of DBD Plasma on Hydrocarbon Fuel Reforming and Change in Flammability Limits (DBD 플라즈마 개질에 의한 탄화수소계 연료 화염의 가연한계 변화)

  • Song, Mincheol;Ahn, Taekook;Nam, Younwoo;Park, Sunho
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.189-192
    • /
    • 2015
  • An experimental study was conducted to find the effect of DBD plasma on the flammability limits of inert-gas-diluted fuel. The results showed that the concentration of diluting nitrogen at flammability limit increased when nitrogen-diluted methane and propane were reformed by plasma, while it decreased when nitrogen-diluted ethylene was reformed by plasma. Gas chromatography results suggested that the fuel type dependence of flammability limits is due to the difference in the concentrations of hydrogen and hydrocarbon species in reformed fuel.

  • PDF

Vacuum Plasma Sprayed NiTiZrSiSn Coating (진공 열 플라즈마 용사공정을 통한 NiTiZrSiSn 벌크 비정질 코팅 형성)

  • Yoon, Sang-Hoon;Kim, June-Seob;Kim, Soo-Ki;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.42-48
    • /
    • 2007
  • An inert gas atomized NiTiZrSiSn bulk metallic glass feedstock was sprayed onto the copper plate using vacuum plasma spraying process. In order to change the in-flight particle energy, that is, thermal energy, the hydrogen gas flow rate in plasma gas mixture was increased at the constant flow rate of argon gas. Coating and single pass spraying bead were produced with the least feeding rate. Regardless of the plasma gas composition, fully melted through unmelted particle could be observed on the overlay coating. However, the frequency of the unmelted particle number density was increased with the decrease of the hydrogen gas flow rate. The amorphous phase fraction within coating was also affected by the number density of the unmelted particle.

Experimental Study on Design Parameters of Explosive-driven High-intensity Flash Generator (폭발형 고섬광 발생장치의 설계 변수에 관한 실험적 연구)

  • Kim, Kyung Sik;Ahn, Jae-Woon;Yang, Hui-Won;Kwon, Mi-Ra
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.283-288
    • /
    • 2016
  • A non-lethal weapon is a device that can subdue targets without causing death or mortal wounds. A high-intensity flash generator can negate electro-optical sensors and cause temporal flash blindness with a high intensity of light. In this study, we derive the design parameters of an explosive-driven high-intensity flash generator that uses the interaction of plasma caused by the detonation of explosives with surrounding inert gas. To determine the design parameters of the flash generator, we analyze test results measured using optical sensors. The experimental results show that the light intensity of xenon gas is about four times higher than that of air. In addition, the intensity increases with the weight of the explosive, and the inert gas cross-sectional area encountered a shock wave in the airframe. The light intensity caused by a double-initiation generator is about two times higher than that of the single-initiation generator.

Noise Reduction Design of Plasma Display Panel (플라즈마 디스플레이의 저소음 설계)

  • Park, Dae-Kyong;Kweon, Hae-Sub;Jang, Dong-Seob
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.369.2-369
    • /
    • 2002
  • For the evaluation of the plasma display panel (PDP)'s noise, vibration and sound characteristics of fanless PDP are measured and investigated. PDP is a type of two-electrode vacuum tube which operatres on the same principle as a household fluorescent light. An inert gas such as argon or neon is injected between two glass plates on which transparent electrodes have been formed, and the glass is illuminated by generating discharge. (omitted)

  • PDF

Magnetotransport Properties of Co-Fe/Al-O/Co-Fe Tunnel Junctions Oxidized with Microwave Excited Plasma

  • Nishikawa, Kazuhiro;Orata, Satoshi;Shoyama, Toshihiro;Cho, Wan-Sick;Yoon, Tae-Sick;Tsunoda, Masakiyo;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.63-71
    • /
    • 2002
  • Three fabrication techniques for forming thin barrier layer with uniform thickness and large barrier height in magnetic tunnel junction (MTJ) are discussed. First, the effect of immiscible element addition to Cu layer, a high conducting layer generally placed under the MTJ, is investigated in order to reduce the surface roughness of the bottom ferromagnetic layer, on which the barrier is formed. The Ag addition to the Cu layer successfully realizes the smooth surface of the ferromagnetic layer because of the suppression of the grain growth of Cu. Second, a new plasma source, characterized as low electron energy of 1 eV and high density of $10^{12}$ $cm^{-3}$, is introduced to the Al oxidation process in MTJ fabrication in order to reduce damages to the barrier layer by the ion-bombardment. The magnetotransport properties of the MTJs are investigated as a function of the annealing temperature. As a peculiar feature, the monotonous decrease of resistance area product (RA) is observed with increasing the annealing temperature. The decrease of the RA is due to the decrease of the effective barrier width. Third, the influence of the mixed inert gas species for plasma oxidization process of metallic Al layer on the tunnel magnetoresistance (TMR) was investigated. By the use of Kr-O$_2$ plasma for Al oxidation process, a 58.8 % of MR ratio was obtained at room temperature after annealing the junction at $300{^{\circ}C}$, while the achieved TMR ratio of the MTJ fabricated with usual Ar-$0_2$ plasma remained 48.4%. A faster oxidization rate of the Al layer by using Kr-O$_2$ plasma is a possible cause to prevent the over oxidization of Al layer and to realize a large magnetoresistance.

Effect of Processing Conditions for Atmospheric Plasma Spraying on Characteristics of Ceramic Coatings (상압 플라즈마 용사의 공정조건에 따른 세라믹 피막의 특성)

  • 주원태;최병룡;홍상희
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.4
    • /
    • pp.192-202
    • /
    • 1993
  • The characteristics of the high-performance ceramic coatings fabricated on the optimum processings con-ditions for the atmospheric plasma spraying are evaluated by various material tests and analyses. The opti-mum processing parameters for the plasma spraying are determined by using the two-level orthogonal arrays of fractional factorial testing method as a statistical approach. Material tests for the coating specimens are carried out to evaluate microstructure, hardness, adhesion strength, and deposition efficiency. The properties of Al2O3-13%TiO2 coating are discussed with regard to the effective processings parameters. The decarburization effects of WC-12%Co coating is examined by XRD analysis in terms of the arc power and the secondary gas species. The hardness of Al2O2-13%TiO2 coating is increased with the arc power and shows the maximum value at around 40 lpm of Ar gas flowrate, which appears to be the most critical parame-ter on the deposition efficiency. For reducing the decarburization of WC-12%Co coating, the injection of inert He gas instead of reactive H2 gas as a secondary gas is more effective than the dropping of arc power to lessen the plasma enthalpy.

  • PDF

Dry Etching Characteristics of Zinc Oxide Thin Films in Cl2-Based Plasma

  • Woo, Jong-Chang;Ha, Tae-Kyung;Li, Chen;Kim, Seung-Han;Park, Jung-Soo;Heo, Kyung-Mu;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.60-63
    • /
    • 2011
  • We investigated the etching characteristics of zinc oxide (ZnO) and the effect of additive gases in a $Cl_2$-based inductively coupled plasma. The inert gases were argon, nitrogen, and helium. The maximum etch rates were 44.3, 39.9, and 37.9 nm/min for $Cl_2$(75%)/Ar(25%), $Cl_2$(50%)/$N_2$(50%), and $Cl_2$(75%)/He(25%) gas mixtures, 600 W radiofrequency power, 150 W bias power, and 2 Pa process pressure. We obtained the maximum etch rate by a combination of chemical reaction and physical bombardment. A volatile compound of Zn-Cl. achieved the chemical reaction on the surface of the ZnO thin films. The physical etching was performed by inert gas ion bombardment that broke the Zn-O bonds. The highly oriented (002) peak was determined on samples, and the (013) peak of $Zn_2SiO_4$ was observed in the ZnO thin film sample based on x-ray diffraction spectroscopy patterns. In addition, the sample of $Cl_2$/He chemistry showed a high full-width at half-maximum value. The root-mean-square roughness of ZnO thin films decreased to 1.33 nm from 5.88 nm at $Cl_2$(50%)/$N_2$(50%) plasma chemistry.

An analysis on the impurities generated by discharge in AC plasma display panel (교류 플라즈마 표시기 방전 시 발생하는 불순물 종의 분석)

  • 김광남;김중균;양진호;황기웅;이석현
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.482-489
    • /
    • 1999
  • AC PDP(P1asma Display Pane1)s use the mixture of inert gases to generate a discharge inside the display pixels. Impurities such as CO, $CO_2$ and OH inside discharge region may deteriorate the characteristics of PDP operation during long life time of PDP. Electro-negative gas such as CO can cause the sustain pulse amplitude to rise by attaching electrons which will play an important role in the earlier stage of the discharge. MgO film is used to protect the dielectric layer in AC PDP, and is in contact with the free space of display pixel where it is filled with the inert gas mixture. So, MgO film can be a main source of impurities. In this experiment, we observed the change of impurity generation of various MgO films which were deposited by different methods, by using QMS. (quadropole mass spectrometer) The main impurites were $H_2$, CO and $CO_2$. And with the comparison of the TPD (temperature programmed desorption) result, it can be understood that impurity gases are generated by sputtering of MgO surface not by outgassing. Deposition method had effects on the characteristics of the impurity generation. The MgO film manufactured by e-beam evaporation generated more amount of impurity gases than the MgO films manufactured by sputtering or ion-plating. And also heat treatment of MgO film after deposition decreased the magnitude of impurity gas generation.

  • PDF

SUPERLUBRICITY IN CARBON FILMS

  • Erdemir, Ali
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.163-164
    • /
    • 2002
  • This paper describes a new carbon film that afford superlubricity (i.e, friction coefficients of 0.001- 0.005) and superlow wear rates (i.e., $10^{-11}-10^{-10}mm^3/N.m$) to sliding metallic and ceramic surfaces, when tested in inert test environments. The wear life of these films are more than 1000 km even under very high contact pressures (i.e., 1-3 GPa) and at a wide range of sliding velocities (i.e., 0.1 to 2 m/s). They are produced in a plasma enhanced chemical vapor deposition system at room temperature using highly hydrogenated gas discharge plasmas. Extensive research has shown that films grown in highly hydrogenated gas discharge plasmas (i.e., hydrogen-to-carbon ratio of 6 and above) provide superlow friction and wear coefficients. In full paper, specific conditions under which superlubricity can be achieved in carbon films will be discussed.and a mechanistic model will be proposed to explain the superlubricity of new carbon films.

  • PDF