• 제목/요약/키워드: Inert gas

검색결과 384건 처리시간 0.021초

미응축가스 재순환에 따른 팜 부산물 급속열분해 반응 공정 특성 (Effect of the Recycling of Non-condensable Gases on the Process of Fast Pyrolysis for Palm Wastes)

  • 오창호;이장훈
    • 청정기술
    • /
    • 제24권3호
    • /
    • pp.233-238
    • /
    • 2018
  • 급속열분해를 통한 바이오-오일 생산 공정은 무산소 조건에서 바이오매스를 급속열분해하여 얻어진 열분해가스를 급속 냉각 시켜 열분해오일을 생산한다. 이에 공정 내부의 산소 농도를 0 ~ 3% 이하로 유지하기 위해 캐리어 가스로 질소를 사용한다. 그러나 공정의 규모가 커질수록 질소의 사용량이 증가하고, 이는 공정 운전비용 증감 및 지속적인 질소 가스 충전을 위한 설비비 증감 할 수밖에 없다. 이에 본 연구에서는 팜 부산물 열분해에서 질소 사용량 감소를 위해 미응축가스 재순환 공정을 적용하여, 가스재순환율에 따른 질소 사용량과 미응축가스의 가연성 성분의 농도 변화를 측정하고 이에 따른 바이오-오일의 품질 수율 변화를 측정하여 가스재순환 공정의 활용 가능성을 연구하였다.

New Materials Based Lab-on-a-Chip Microreactors: New Device for Chemical Process

  • 김동표
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.51-51
    • /
    • 2012
  • There is a growing interest in innovative chemical synthesis in microreactors owing to high efficiency, selectivity, and yield. In microfluidic systems, the low-volume spatial and temporal control of reactants and products offers a novel method for chemical manipulation and product generation. Glass, silicon, poly(dimethylsiloxane) (PDMS), and plastics have been used for the fabrication of miniaturized devices. However, these materials are not the best due to either of low chemical durability or expensive fabrication costs. In our group, we have recently addressed the demand for economical resistant materials that can be used for easy fabrication of microfluidic systems with reliable durability. We have suggested the use of various specialty polymers such as silicon-based inorganic polymers and fluoropolymer, flexible polyimide (PI) films that have not been used for microfluidic devices, although they have been used for other areas. And inexpensive lithography techniques were used to fabricate Lab-on-a-Chip type of microreactors with differently devised microchannel design. These microreactors were demonstrated for various synthetic reactions: liquid, liquid-gas organic chemical reactions in heterogeneous catalytic processes, syntheses of polymer and non-trivial inorganic materials. The microreactors were inert, and withstand even harsh conditions, including hydrothermal reaction. In addition, various built-in microstructures inside the microchannels, for example Pd decorated peptide nanowires, definitely enhance the uniqueness and performance of microreactors. These user-friendly Lab-on-a-Chip devices are useful alternatives for chemist and chemical engineer to conventional chemical tools such as glass.

  • PDF

TIG-FSW 하이브리드 용접을 이용한 이종재 맞대기 용접부의 온도 분포 특성 (Temperature Behavior in Dissimilar Butt Joint During TIG Assisted Friction Stir Welding)

  • 방희선;엠 에스 엠조이
    • Journal of Welding and Joining
    • /
    • 제29권5호
    • /
    • pp.63-71
    • /
    • 2011
  • Three-dimensional finite element analysis is performed to study the temperature distribution phenomenon of TIG assisted friction stir welding (TAFSW) between dissimilar plates (Al 6061-T6 and stainless steel 304). TAFSW is a solid-state welding process that integrates TIG (Tungsten Inert Gas) into a friction stir welding (FSW), to preheat the harder material ahead of FSW tool during welding. In order to facilitate the industrial application of welding, 3D numerical modeling of heat transfer has been carried out applying Finite Element Method (FEM). The temperature distribution due to heat generation during TAFSW on dissimilar materials joint is analysed using in-house solver. Moving heat source along with frictional heat between the work specimens and tool surface is considered to calculate the heat input. The analytical model used predicts successfully the maximum welding temperatures that occur on the dissimilar materials during TAFSW. Comparison with the infra red camera and thermocouple measurement results shows that the results from the current numerical simulation have good agreement with the measured data.

피로강도 향상을 위한 표면마찰교반법의 가공조건 및 비드형상 (Bead Shape and Conditions of Friction Stir Processing to Improve Fatigue Strength)

  • 박정웅;안규백;김흥주;조병철
    • Journal of Welding and Joining
    • /
    • 제31권4호
    • /
    • pp.73-79
    • /
    • 2013
  • Burr grinding, Tungsten Inert Gas (TIG) dressing, ultrasonic impact treatment, and peening are used to improve fatigue life in steel structures. These methods improve the fatigue life of weld joints by hardening the weld toe, by improving the bead shape, and by creating the compressive residual stress. In this study, a new post-weld treatment method improving the weld bead shape and metal structure at the welding zone using Friction Stir Processing (FSP), a welding process, is proposed to enhance fatigue life. For that, a pin-shaped tool and processing condition employing Friction Stir Processing (FSP) is established through experiments. Experimental results revealed that fatigue life is improved by around 50% compared to as-welded fatigue specimens by reducing the stress concentration at the weld toe and by generating a metal structure finer than that of flux-cored arc welding (FCAW).

전기 폭발법에 의해 제조된 Cu-Ni 나노 분말의 윤활성 향상 (Tribological Properties of Cu-Ni Alloy Nanopowders Synthesized by Pulsed Wire Evaporation (PWE) Method)

  • 오정석;박중학;김흥회;이창규
    • 한국분말재료학회지
    • /
    • 제11권5호
    • /
    • pp.376-382
    • /
    • 2004
  • Nanoscale Cu-Ni alloy nanopowders have been produced by a pulsed wire evaporation method in an inert gas. The effect of Cu-Ni alloy nanopowders as additives to motor oil on the tribological properties was studied at room temperature. The worn surfaces were characterized by Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS). Cu-Ni alloy nanopowders as additives lowered coefficient of friction and wear rate. It was found that a copper containing layer on the worn surface was formed, and deposited layers of the metal cladding acted as lubricant on the worn surface, reducing the friction coefficient. It was clearly demonstrated that Cu-Ni alloy nanopowders as additives are able to restore the worn surface and to preserve the friction surfaces from wear.

적응격자를 이용한 충격파 유도 연소장 해석 (Numerical Simulation of Shock-Induced Combustion on Adaptive Mesh)

  • 김상훈;최정열;오세종
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.397-400
    • /
    • 2010
  • 충격파 유도 연소장에서의 적응격자기법의 유용성을 확인하기 위하여 화학반응식을 포함한 2차원 Euler 방정식을 이용하여 삼각형 비정렬 적응격자계에서 계산을 수행하였다. 2차원 쐐기형상에 대하여 냉가스 및 열가스 유동 해석을 수행하였다. 적응격자를 이용하여 경사충격파에서 폭굉파로의 천이를 잘 관찰 할 수 있었고, 유도영역, 천이영역, 폭굉영역 등의 특성을 잘 모사하는 것을 확인 할 수 있었다. 본 연구를 통하여 연소장이 포함된 고속압축성 유동장에서의 비정렬 적응격자의 유용성을 확인 할 수 있었다.

  • PDF

마이크로웨이브 플라즈마를 이용한 탄화공정 및 PAN fiber의 강도 향상에 관한 연구 (A Study on the Carbonization and Strengthening of PAN Fiber by Microwave Plasma)

  • 최지성;주정훈;이헌수
    • 한국표면공학회지
    • /
    • 제45권2호
    • /
    • pp.89-94
    • /
    • 2012
  • A study to replace a high temperature thermal carbonization process with microwave plasma process is carried for PAN fiber as a starting material. Near atmospheric pressure microwave plasma (1 Torr~45 Torr) was used to control to get the fiber temperature up to $1,000^{\circ}C$. Even argon is an inert gas, its plasma state include high internal energy particles; ion (15.76 eV) and metastable (11.52 eV). They are very effective to lower the necessary thermal temperature for carbonization of PAN fiber and the resultant thermal budget. The carbonization process was confirmed by both EDS (energy dispersive spectroscopy) of plasma treated fibers and OES (optical emission spectroscopy) during processing step as a real time monitoring tool. The same trend of decreasing oxygen content was observed in both diagnostic methods.

고다공성 카본 에어로젤(C-Aerogel) 표면 특성 (Surface Properties of the High Porous Carbon Aerogels)

  • 김지혜;이창래;정용수;김양도;김인배
    • 한국표면공학회지
    • /
    • 제41권3호
    • /
    • pp.114-120
    • /
    • 2008
  • The pyrolysized carbon xerogel and aerogels were prepared from the sol-gel polymerization of resorcinol-formaldehyde(RF) followed by the dry process under ambient pressure and supercritical carbon dioxide condition respectively. The thermal behaviour of RF polymer xerogel was investigated with TGA analyzer to correspond with the pyrolysis process. The surface properties such as particle size, morphology and the point of zero charge of the pyrolysized porous carbon aerogels were studied for the precious metal catalyst supported media. It was found that the volume of the polymer aerogel decreased because of the significant linear shrinkage and weight loss of polymer gel during the carbonization. The point of zero charge of the carbon aerogel pyrolysized at $1050^{\circ}C$ under inert gas flow was about 10.

희석된 수소-공기 혼합기의 크로스오버 온도와 점화지연시간 (Crossover Temperature and Ignition Delay Time of Diluted Hydrogen-Air Mixtures)

  • 이동열;이의주
    • 한국안전학회지
    • /
    • 제37권6호
    • /
    • pp.18-24
    • /
    • 2022
  • Hydrogen is a clean fuel and is used in many applications in power systems such as fuel cells. It has unique properties such as wide flammability, high burning velocity, and difficulty to liquefy, which lead to critical safety issues. Fire and explosion are the most frequently occurring accidents and one of the major reasons is autoignition. In the ignition process, the chemistry of hydrogen combustion depends mainly on radical pools, and the temperature at which chain-branching and terminating rates are equal is called the crossover temperature. This study addresses the homogeneous autoignition of diluted hydrogen-air mixtures to investigate the effects of dilution on the crossover temperature to prevent explosions in the future. The new criterion for crossover temperature is introduced by only hydrogen radicals to adjust more simply. The detailed calculations indicate that the crossover temperatures are low at high dilutions of carbon dioxide and nitrogen because the concentrations of active radicals are reduced when an inert gas is added. This result is expected to contribute to hydrogen safety and realize a hydrogen society in the future.

Therapeutic Effect of Low-Energy Nitrogen Plasma Pulses on Tinea Pedis

  • Kim, Heesu;Kim, Hyun-Jo;Cho, Sung Bin
    • Medical Lasers
    • /
    • 제8권1호
    • /
    • pp.28-31
    • /
    • 2019
  • Superficial fungal infections with dermatophytes, nondermatophyte molds, or yeasts are treated primarily with topical and/or systemic antifungal agents. Additional or alternative treatment modalities, particularly energy-delivering modalities, however, are used widely to induce fungicidal effects via selective photothermal reactions. In addition to light- or laser-based devices, plasma therapy also has antifungal properties. This report describes a Korean male patient with mycologically confirmed tinea pedis that was treated effectively with two sessions of nitrogen plasma treatment at one-week intervals using a plasma delivering system. Nitrogen plasma was prepared by loading a 0.28-ml inert nitrogen gas/pulse that was activated by a microwave generator. The other treatment settings were a nozzle diameter of 5 mm, pulse energy of 0.75 J, pulse duration of 7 msec, and two passes. One week after the first session of nitrogen plasma treatment, the patient exhibited marked reductions in scale and inflammation. One month after the final treatment, no clinical features of recurrence were found, and successive potassium hydroxide testing revealed negative results.