DOI QR코드

DOI QR Code

Surface Properties of the High Porous Carbon Aerogels

고다공성 카본 에어로젤(C-Aerogel) 표면 특성

  • Kim, Ji-Hye (Korea Institute of Materials Science (KIMS), Dept. Surface Technology) ;
  • Lee, Chang-Rae (Korea Institute of Materials Science (KIMS), Dept. Surface Technology) ;
  • Jeong, Young-Soo (Korea Institute of Materials Science (KIMS), Dept. Surface Technology) ;
  • Kim, Yang-Do (Pusan National University, School of Materials Science & Engineering) ;
  • Kim, In-Bae (Pusan National University, School of Materials Science & Engineering)
  • 김지혜 (재료연구소 표면기술연구부 연료전지소재연구그룹) ;
  • 이창래 (재료연구소 표면기술연구부 연료전지소재연구그룹) ;
  • 정용수 (재료연구소 표면기술연구부 연료전지소재연구그룹) ;
  • 김양도 (부산대학교 공과대학 재료공학과) ;
  • 김인배 (부산대학교 공과대학 재료공학과)
  • Published : 2008.06.30

Abstract

The pyrolysized carbon xerogel and aerogels were prepared from the sol-gel polymerization of resorcinol-formaldehyde(RF) followed by the dry process under ambient pressure and supercritical carbon dioxide condition respectively. The thermal behaviour of RF polymer xerogel was investigated with TGA analyzer to correspond with the pyrolysis process. The surface properties such as particle size, morphology and the point of zero charge of the pyrolysized porous carbon aerogels were studied for the precious metal catalyst supported media. It was found that the volume of the polymer aerogel decreased because of the significant linear shrinkage and weight loss of polymer gel during the carbonization. The point of zero charge of the carbon aerogel pyrolysized at $1050^{\circ}C$ under inert gas flow was about 10.

Keywords

References

  1. R. Saliger, U. Fischer, C. Herta, J. Fricke, J. Non-Cryst. Solids, 225(1) (1998) 81 https://doi.org/10.1016/S0022-3093(98)00104-5
  2. J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala, J. F. Poco, J. Electrochem. Soc., 143(1) (1996) 159 https://doi.org/10.1149/1.1836402
  3. Wendy S. Baker, Jeffrey W. Long, Rhonda M. Stroud, Debra R. Rolison, J. Non-Cryst. Solids, 350(1) (2004) 80 https://doi.org/10.1016/j.jnoncrysol.2004.07.088
  4. L. W. Hrubesh, J. Non-Cryst. Solids, 225(1) (1998) 335 https://doi.org/10.1016/S0022-3093(98)00135-5
  5. R. W. Pekala, J. Mater. Sci., 24(9) (1989) 3221 https://doi.org/10.1007/BF01139044
  6. R. W. Pekala, US patent, 4873218, (1989)
  7. R. W. Pekal, J. Non-Crystal. Solids, 145(1) (1992) 90 https://doi.org/10.1016/S0022-3093(05)80436-3
  8. S. A. Al-Muhtaseb, J. A. Ritter, Adv. Mater., 15(2) (2003) 101 https://doi.org/10.1002/adma.200390020
  9. John R. Regalbuto, Catalyst Preparation: Science and Engineering, John R. Regalbuto (ed), CRC Press, (2007) 297
  10. C. Lin, J. A. Ritter, Carbon, 35(9) (1997) 1271 https://doi.org/10.1016/S0008-6223(97)00069-9
  11. F. Rodriguez-Reinoso, Carbon, 36(3) (1998) 159 https://doi.org/10.1016/S0008-6223(97)00173-5
  12. A. Bismarck, C. Wuertz, J. Springer, Carbon, 37(7) (1999) 1019 https://doi.org/10.1016/S0008-6223(98)00291-7
  13. Y.-H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, D. Wu, Carbon, 41(5) (2003) 1057 https://doi.org/10.1016/S0008-6223(02)00440-2
  14. K. Kinoshita, Carbon : Electrochemical and Physicochemical Properties, K. Kinoshita (ed), John Wiley & Sons, N.Y. (1998) 86
  15. C. A. Leon, L. R. Radovic, Chemistry and Physics of Carbon, Vol. 24, P. A. Thrower (ed), Marcel Dekker, NY. (1994) 213