Journal of Information Technology Applications and Management
/
제31권1호
/
pp.79-95
/
2024
In modern society, as data plays a crucial role at the levels of businesses, industries, and nations, the utilization of data becomes increasingly important. Consequently, governments are prioritizing the development and implementation of plans to cultivate data workforce, viewing the data industry as a cornerstone of national strategy. To enhance domestic capabilities and nurture workforce in the data industry, it is deemed necessary to conduct an objective comparative analysis with major foreign countries. Therefore, this study aims to analyze cases of domestic and international data industries and explore methods for quantitatively comparing data industry workforce across nations. Initially, the study distinguishes between "data industry workforce" and "data job-related workforce," particularly focusing on professionals handling data-related tasks. Subsequently, it compares the workforce sizes of data job-related workforce across nations, utilizing standardized occupational classification codes based on the International Standard Classification of Occupations(ISCO). However, it should be noted that countries employing their own unique occupational classification systems often require matching job titles with similar meanings for accurate comparison. Through this study, it is anticipated that policymakers will be able to establish future directions for cultivating data workforce based on comparable status.
Many data mining techniques have been proved useful in revealing important patterns from large data sets. Especially, data mining techniques play an important role in a customer data analysis in a financial industry and an electronic commerce. Also, there are many data mining related research papers in a semiconductor industry and an automotive industry. In addition, data mining techniques are applied to the bioinformatics area. To satisfy customers' various requirements, each industry should develop new processes with more accurate production criteria. Also, they spend more money to guarantee their products' quality. In this manner, we apply data mining techniques to the production-related data such as a test data, a field claim data, and POP (point of production) data in the automotive parts industry. Data collection and transformation techniques should be applied to enhance the analysis results. Also, we classify various types of manufacturing processes and proposed an analysis scheme according to the type of manufacturing process. As a result, we could find inter- or intra-process relationships and critical features to monitor the current status of the each process. Finally, it helps an industry to raise their profit and reduce their failure cost.
This study aims to provide strategic recommendations for promoting the development of the global satellite data services industry by analyzing the startup landscape. Based on the analysis of startup data, such as number of startups, market segment, and funding amount, we examined the paradigm shift in the global satellite data services market, particularly its convergence with other market segments. To this end, we derived the cumulative funding-convergence dynamics matrix, which classifies the converging areas into four quadrants by considering the growth rate of converging segments and the cumulative funding amount. In this way, we can specify converging areas in the satellite data services market that bear potential importance for the creation of new markets. The findings of this study are expected to contribute to the advancement of the satellite data services industry and facilitate the exploration of new market opportunities. Furthermore, they can serve as a valuable reference for policy makers, industry stakeholders, government officials, and researchers involved in the satellite data services industry in capitalizing on the emerging space economy.
Journal of Information Science Theory and Practice
/
제9권3호
/
pp.14-30
/
2021
Data innovation is at the core of the Fourth Industrial Revolution. While the catastrophic COVID-19 pandemic has accelerated the societal shift toward a data-driven society, the direction of overall data regulation remains unclear and data policy experts have yet to reach a consensus. This study identifies and examines the ideal regulator models of data-policy experts and suggests an appropriate method for developing policy in the data economy. To identify different typologies of data regulation, this study used Q methodology with 42 data policy experts, including public officers, researchers, entrepreneurs, and professors, and additional focus group interviews (FGIs) with six data policy experts. Using a Q survey, this study discerns four types of data policy regulators: proactive activists, neutral conservatives, pro-protection idealists, and pro-protection pragmatists. Based on the results of the analysis and FGIs, this study suggests three practical policy implications for framing a nation's data policy. It also discusses possibilities for exploring diverse methods of data industry regulation, underscoring the value of identifying regulatory issues in the data industry from a social science perspective.
Purpose - The main target to do this analysis is to find out the competitiveness between 2 countries (China and USA) in the aircraft business industry. The main target about mentioned research is to find out how a certain country takes more advantage against the other partner country in the country's trade structure. Research design, data, and methodology - Mentioned research period ranges from 1995 to 2016. Research basic data are coming from UN COMTRADE database which is top of top in the world statistical data and Research methods are used 3 types of international trade related theory for credible data outcomes. Results - Even though general data about aircraft industry are open to world society, detailed classified data are not easy to get them. Generally, Both China & USA are not easy to obtain data especially, in the overseas production field as a business secret which is one of research limitation in every research scopes. Conclusions - Even though Chinese aircraft industry looks like strong and more advantage against those of other countries based on competitive labor work wages and low price of raw material and resources, Actually, USA has overwhelmingly dominant advantage against that of China in the field of aircraft industry because USA has abundant capitals and up-to-date advanced high-technology as top of world economic communities. Additionally, even if USA aircraft industries hold a dominant position so far, if USA proposes sound competition relationship with China about aircraft industry, both 2 countries' future will be bright as their cooperation will make synergy effects for mutual benefits under current circumstances in 2 countries.
Purpose: The research aims to address the intricacies of AI and Big Data application within the food industry. This study explores the strategic implementation of AI and Big Data in the food industry. The study seeks to understand how these technologies can be employed to bolster consumer engagement and contribute to market expansion, while considering ethical implications. Research Method: This research employs a comprehensive approach, analyzing current trends, case studies, and existing academic literature. It focuses on the application of AI and Big Data in areas such as supply chain management, consumer behavior analysis, and personalized marketing strategies. Results: The study finds that AI and Big Data significantly enhance market analytics, consumer personalization, and market trend prediction. It highlights the potential of these technologies in creating more efficient supply chains, improving consumer satisfaction through personalization, and providing valuable market insights. Conclusion and Implications: The paper offers actionable insights and recommendations for the effective implementation of AI and Big Data strategies in the food industry. It emphasizes the need for ethical considerations, particularly in data privacy and the transparency of AI algorithms. The study also explores future trends, suggesting that AI and Big Data will continue to revolutionize the industry, emphasizing sustainability, efficiency, and consumer-centric practices.
Journal of Information Technology Applications and Management
/
제21권4_spc호
/
pp.381-401
/
2014
This study proposes the accurate economic effect (employment inducement coefficient, hiring inducement coefficient, index of the sensitivity of dispersion, index of the power of dispersion, and ratio of value added) of Korea software industry by analyzing the inter-industry relation using the modified inter-industry table. Some previous studies related to the inter-industry analysis were reviewed and the key problems were identified. First, in the current inter-industry table publishedby the Bank of Korea, the output of software industry includes not only the output of pure software industry (package software and IT services) but also the output of non-software industry due to the misclassification of the industry. This causes the output to become bigger than the actual output of the software industry. Second, during rewriting the inter-industry table, the output is changing. The inter-industry table is the table in the form of rows and columns, which records the transactions of goods and services among industries which are required to continue the activities of each industry. Accordingly, if only an output of a specific industry is changed, the reliability of the table would be degraded because the table is prepared based on the relations with other industries. This possibly causes the economic effect coefficient to degrade reliability, over or under estimated. This study tries to correct these problems to get the more accurate economic effect of the software industry. First, to get the output of the pure software section only, the data from the Korea Electronics Association(KEA) was used in the inter-industry table. Second, to prevent the difference in the outputs during rewriting the inter-industry table, the difference between the output in the current inter-industry table and the output from KEA data was identified and then it was defined as the non-software section output for the analysis. The following results were obtained: The pure software section's economic effect coefficient was lower than the coefficient of non-software section. It comes from differenceof data to Bank of Korea and KEA. This study hasa signification from accurate economic effect of Korea software industry.
Recently, it becomes a big trend in the banking industry to apply a big data analytics technique to extract essential knowledge from their customer database. Such a trend is based on the capability to analyze the big data with powerful analytics software and recognize the value of big data analysis results. However, there exits still a need for more systematic theory and mechanism about how to adopt a big data analytics approach in the banking industry. Especially, there is no study proposing a practical case study in which big data analytics is successfully accomplished from the marketing perspective. Therefore, this study aims to analyze a target marketing case in the banking industry from the view of big data analytics. Target database is a big data in which about 3.5 million customers and their transaction records have been stored for 3 years. Practical implications are derived from the marketing perspective. We address detailed processes and related field test results. It proved critical for the big data analysts to consider a sense of Veracity and Value, in addition to traditional Big Data's 3V (Volume, Velocity, and Variety), so that more significant business meanings may be extracted from the big data results.
With the rapid development of Internet of Things (IoT) and big data technology, a large amount of data will be generated during the operation of related industries. How to classify the generated data accurately has become the core of research on data mining and processing in IoT industry chain. This study constructs a classification model of IoT industry chain based on improved random forest algorithm and text analysis, aiming to achieve efficient and accurate classification of IoT industry chain big data by improving traditional algorithms. The accuracy, precision, recall, and AUC value size of the traditional Random Forest algorithm and the algorithm used in the paper are compared on different datasets. The experimental results show that the algorithm model used in this paper has better performance on different datasets, and the accuracy and recall performance on four datasets are better than the traditional algorithm, and the accuracy performance on two datasets, P-I Diabetes and Loan Default, is better than the random forest model, and its final data classification results are better. Through the construction of this model, we can accurately classify the massive data generated in the IoT industry chain, thus providing more research value for the data mining and processing technology of the IoT industry chain.
International Journal of Internet, Broadcasting and Communication
/
제15권4호
/
pp.326-331
/
2023
Korea's cultural content industry can develop into another unique tourism industry. However, since other prior studies focus on the Japanese content industry, this study identifies modern industrial trends by combining the unique characteristics of Korean content, that is, cultural content tourism, and the analysis ability of big data. The current status and direction of the cultural content tourism industry were studied by utilizing the extensive information collection and in-depth analysis capabilities of big data, and as a result, it was confirmed that the trend of the cultural content industry is related to the business aspect of cultural content, not the pure content interest of cultural content. This shows that Korean cultural contents have a strong business aspect. As a limitation, when research design was conducted using social media big data, the age, gender, etc. of the subject analyzed with unique anonymity could not be known. The Korean cultural content industry is expected to be successful in terms of business.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.