• Title/Summary/Keyword: Industrial grade medium

Search Result 23, Processing Time 0.025 seconds

Hepatoprotective Effect of Exo-polysaccharide Produced from Submerged Mycelial Culture of Ganoderma lucidum WK-003 by Using Industrial Grade Medium (산업용배지 사용에 의한 영지버섯 균주 WK-003균사체 액체 배양으로부터 생산된 세포외 다당체의 간 보호 효과)

  • Yang, Byung-Keun;Jeon, Yong-Jae;Jeong, Sang-Chul;Kim, Dong-Hyun;Ha, Ji-Young;Yun, Jong-Won;Shon, Dong-Hwan;Go, Geon-Il;Song, Chi-Hyun
    • The Korean Journal of Mycology
    • /
    • v.27 no.1 s.88
    • /
    • pp.82-86
    • /
    • 1999
  • The production of hepatoprotective exo-polysaccharide by using synthetic and industrial grade media of the submerged mycelial culture of Ganoderma lucidum WK-003 was compared. The optimum concentrations of molasses and corn steep liquor (industrial grade) for the production of exo-polysaccharide were 5% and 2.5%, respectively. The productions of the exo-polysaccharide by using a 5l jar fermenter with industrial grade medium and synthetic medium were 11.2 g D.W./l and 7.2g D.W./l, respectively. Glutamic pyruvic transaminase (GPT) activities in the serum of intoxicated Sprague-Dawley rats by oral administration of the exo-polysaccharide produced from the industrial grade and synthetic media for 4 consecutive days were decreased from 704 IU/L to 356IU/L and 704IU/L to 349IU/L, respectively.

  • PDF

Effect of Corrugation Fluting on the Compressive Strength of Corrugated Fiberboard Box for Food Packaging (골판지의 골 성형이 식품포장용 골판지 상자의 압축강도에 미치는 영향)

  • Kim, Cheong;Her, Jae-Young;Lee, Kwang-Geun
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.106-111
    • /
    • 2010
  • In this study, we performed corrugation fluting experiments to examine the relationship between high-low corrugation of a corrugated medium and compressive strength of corrugated containers for food packaging. A low-grade corrugated medium was found to suffer from weak tensile resistance and to be prone to stealing, which tends to produce low corrugation. In contrast, a medium with a large corrugation deviation often caused slimming during fluting and produced irregular corrugations. Experiments of high-low corrugation distribution according to corrugated medium grades indicate that a high grade medium shows a smaller ratio of low corrugation. The thickness of corrugated fiberboard is weakly correlated to the basis weight of medium, yet positively correlated to the medium thickness (y=3.9732x+4.2712, $R^{2}=0.8142$) and inversely proportional to the medium density (y=-3.1213x+6.8736, $R^{2}=0.9919$). Compressive strength of a corrugated fiberboard box is low, if made of corrugated medium with large low corrugation distribution. Compressive strength showed 13% variation with respect to medium grades and 21% variation for various test samples. The corrugation fluting of a corrugated medium is related to physical properties such as basis thickness and density.

Ethanol Production from Glycerol Using Immobilized Pachysolen tannophilus During Microaerated Repeated-Batch Fermentor Culture

  • Cha, Hye-Geun;Kim, Yi-Ok;Choi, Woon Yong;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.366-374
    • /
    • 2015
  • Herein, we established a repeated-batch process for ethanol production from glycerol by immobilized Pachysolen tannophilus. The aim of this study was to develop a more practical and applicable ethanol production process for biofuel. In particular, using industrial-grade medium ingredients, the microaeration rate was optimized for maximization of the ethanol production, and the relevant metabolic parameters were then analyzed. The microaeration rate of 0.11 vvm, which is far lower than those occurring in a shaking flask culture, was found to be the optimal value for ethanol production from glycerol. In addition, it was found that, among those tested, Celite was a more appropriate carrier for the immobilization of P. tannophilus to induce production of ethanol from glycerol. Finally, through a repeated-batch culture, the ethanol yield (Ye/g) of 0.126 ± 0.017 g-ethanol/g-glycerol (n = 4) was obtained, and this value was remarkably comparable with a previous report. In the future, it is expected that the results of this study will be applied for the development of a more practical and profitable long-term ethanol production process, thanks to the industrial-grade medium preparation, simple immobilization method, and easy repeated-batch operation.

Case Study for Hybrid Tooling Using High Speed Cutting and RP(Rapid Prototyping) Technologies (괘속조형기술과 고속가공을 이용한 하이브리드 금형 개발에 대한 사례연구)

  • Kwon, Hong-Kyu;Jang, Moo-Kyung;Hong, Jung-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.159-166
    • /
    • 2010
  • The speed at which products are developed and released to market is tightly linked to profitability and market share. Hence, many companies are still in a desperate need of real Rapid Tooling (RT) technologies which can really help to expedite their prototype tooling and pre -production tooling for injection molding. Many other companies that have been very skeptical of RT technologies developed so far are working on Hybrid Tooling (HT) that can really meet the market standards. With the conviction that HT can be a reliable alternative for current RT technologies, this paper describes the experimentation how HT process has been being successfully established and effectively applied with typical case studies. Through the experimentation, Ceramic-filled SLA tooling was found to be aptly suited for the low grade mold, and Metal SLS tooling was found to be aptly suited for the medium volume mold both in terms of the lead time, dimensional accuracy, and tooling cost.

Haematococcus pluvialis Cell-Mass Sensing Using Ultraviolet Fluorescence Spectroscopy

  • Lababpour, Abdolmajid;Hong, Seong-Joo;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.1922-1929
    • /
    • 2007
  • A simple whole-cell-based sensing system is proposed for determining the cell mass of H. pluvialis using ultraviolet fluorescence spectroscopy. An emission signal at 368 nm was used to detect the various kinds of green, green-brown, brown-red, and red H. pluvialis cells. The fluorescence emission intensities of the cells were highest at 368 nm with an excitation wavelength of 227 nm. An excitation wavelength of 227 nm was then selected for cell-mass sensing, as the emission fluorescence intensities of the cell suspensions were highest at this wavelength after subtracting the background interference. The emission fluorescence intensities of HPLC-grade water, filtered water, and HPLC-grade water containing a modified Bold's basal medium (MBBM) were measured and the difference was less than 1.6 for the selected wavelengths. Moreover, there was no difference in the emission intensity at 368 nm among suspensions of the various morphological states of the cells. A calibration curve of the fluorescence emission intensities. and cell mass was obtained with a high correlation ($R^2=0.9938$) for the various morphological forms of H. pluvialis. Accordingly, the proposed method showed no significant dependency on the various morphological cell forms, making it applicable for cell-mass measurement. A high correlation was found between the fluorescence emission intensities and the dry cell weight with a mixture of green, green-brown, brown-red, and red cells. In conclusion, the proposed model can be directly used for cell-mass sensing without any pretreatment and has potential use as a noninvasive method for the online determination of algal biomass.

Optimization of an Industrial Medium and Culture Conditions for Probiotic Weissella cibaria JW15 Biomass Using the Plackett-Burman Design and Response Surface Methodology

  • Yu, Hyung-Seok;Lee, Na-Kyoung;Kim, Won-Ju;Lee, Do-Un;Kim, Jong-Ha;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.630-637
    • /
    • 2022
  • The objective of this study was to optimize industrial-grade media for improving the biomass production of Weissella cibaria JW15 (JW15) using a statistical approach. Eleven variables comprising three carbon sources (glucose, fructose, and sucrose), three nitrogen sources (protease peptone, yeast extract, and soy peptone), and five mineral sources (K2HPO4, potassium citrate, ⳑ-cysteine phosphate, MgSO4, and MnSO4) were screened by using the Plackett-Burman design. Consequently, glucose, sucrose, and soy peptone were used as significant variables in response surface methodology (RSM). The composition of the optimal medium (OM) was 22.35 g/l glucose, 15.57 g/l sucrose, and 10.05 g/l soy peptone, 2.0 g/l K2HPO4, 5.0 g/l sodium acetate, 0.1 g/l MgSO4·7H2O, 0.05 g/l MnSO4·H2O, and 1.0 g/l Tween 80. The OM significantly improved the biomass production of JW15 over an established commercial medium (MRS). After fermenting OM, the dry cell weight of JW15 was 4.89 g/l, which was comparable to the predicted value (4.77 g/l), and 1.67 times higher than that of the MRS medium (3.02 g/l). Correspondingly, JW15 showed a rapid and increased production of lactic and acetic acid in the OM. To perform a scale-up validation, batch fermentation was executed in a 5-l bioreactor at 37℃ with or without a pH control at 6.0 ± 0.1. The biomass production of JW15 significantly improved (1.98 times higher) under the pH control, and the cost of OM was reduced by two-thirds compared to that in the MRS medium. In conclusion, OM may be utilized for mass producing JW15 for industrial use.

Physicochemical Characteristics and Volatile Compounds Analysis of Coffee Brews according to Coffee Bean Grinding Grade (커피원두의 분쇄입도에 따른 커피 추출물의 이화학적 품질특성 및 휘발성 향기성분 분석)

  • Lim, Heung-Bin;Jang, Keum-Il;Kim, Dong-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.6
    • /
    • pp.730-738
    • /
    • 2017
  • In this study, we investigated the physicochemical properties of coffee brews according to coffee bean grinding grade. We also examined the effect of grinding grade on amounts of volatile flavor compounds. Coffee brew samples were separated using standard sieves (with pore sizes of 850, 600, and $425{\mu}m$), making particle sizes of ground beans as follows: whole bean (control), $850{\mu}m$ or more (coarse), $850{\sim}600{\mu}m$ (medium), $600{\sim}425{\mu}m$ (fine), and $425{\mu}m$ or less (very fine). For each particle size category, pH, total acidity, brown color intensity, chromaticity, total phenolic content, caffeine content, chlorogenic acid content, and total amounts of volatile flavor compounds generated were compared and analyzed. As grinding grade decreased, pH and brown color intensity increased from 4.84 to 5.18 and from 0.257 to 0.284, respectively, whereas total acidity decreased from 0.31 to 0.17%. As grinding grade decreased, the $L^*$ and $a^*$ color values decreased; however, $L^*$ value did not exhibit a significant difference depending on the grinding grade. The $b^*$ value was 15.75 in the very fine size category, which showed the highest yellowness. There was an 11 or higher color difference between the control and ground coffee powder, indicating a remarkable color difference. The total phenolic, caffeine, and chlorogenic acid contents of the coffee brewed from ground beans with a very fine size were 4.54 mg gallic acid equivalent/mL, $733.0{\mu}g/mL$, and $383.7{\mu}g/mL$, respectively, which were high values. The total amounts of volatile compounds in the very fine size category were found to be greater than 100 mg/kg. In this study, we suggest the basis for coffee quality evaluation, which involves evaluating changes in the physicochemical properties and amounts of flavor compounds of coffee relative to the grinding grade of the beans (basic step of coffee extraction).

Selection of Working fluid for the Organic Rankine Cycle to Utilize Low-Temperature Waste Heat (저온 폐열을 이용하기 위한 유기랭킨 사이클의 작동유체 선정에 관한 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • New & Renewable Energy
    • /
    • v.10 no.4
    • /
    • pp.36-46
    • /
    • 2014
  • Low-grade heats are wasted even though an amount of their energy is huge. In the small and medium industrial complex sites, large amount of low-grade thermal energy generated during the manufacturing process is wasted if it is not used directly for building heating or air-conditioning. In order to utilize this waste thermal energy more efficiently, organic Rankine cycle (ORC) was adopted. The range of operating temperature of ORC was set to $60^{\circ}C$ from $30^{\circ}C$ applicable low-temperature waste heat. A study was conducted to select an appropriate organic working fluid based on these operating conditions. More than 60 working fluids were screened. Eleven working fluids were selected based on the requirements as working fluid for ORC such as environmentally friendly, safety, and good operation on the expander. Finally, six working fluids were selected by considering the operating temperature ranges. Then, a cycle analysis was conducted with these six working fluids. As a results, R-245fa and R-134a appeared as appropriate working fluids for ORC operating at low-temperature condition based on the system efficiency and the turbine output power.

A Study on the Improvement of Technical Guidance Fee for Preventing Accidents at Small-Medium Construction Sites (중·소규모 건설현장 재해예방 기술지도 대가 개선에 관한 연구)

  • Lim, Se-Jong;Shin, Seung-Hyeon;Won, Jeong-Hun;Yoon, Young-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.469-481
    • /
    • 2021
  • Under Korean law, small-to-medium-sized construction projects with budgets of more than 100 million won and less than 12 billion won must receive technical guidance by a visiting technician belonging to a specialized institution. This study proposed a method for calculating the technical guidance fee to prevent the potential inadequacy of technical guidance when the responsibility providing the technical guidance fee is changed from a contractor to a client. The method simplified the construction works which should receive technical guidance into four sections according to the construction amount. For each section, the number of instances of technical guidance per day provided by the visiting technician and the minimum technical grade of the visiting technician were limited, and the guideline for estimating engineering services fees was applied to calculate the fee per instance of technical guidance. The results show that the proposed method can be applied to the establishment of a technical guidance fee guideline since it well reflects the current fee distribution and K2B analysis results.

Evaluation of Grade-Classification of Wood Waste in Korea by Characteristic Analysis (국내 폐목재 특성분석을 통한 등급화 평가)

  • Kim, Joung-Dae;Park, Joon-Seok;Do, In-Hwan;Hong, Soo-Youl;Oh, Gil-Jong;Chung, David;Yoon, Jung-In;Phae, Chae-Gun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1102-1110
    • /
    • 2008
  • This research was performed to analyze the characteristics of wood wastes from origin and to suggest grade-classification for them. Korean proximate analysis was conducted, and heating value, heavy metals and Cl concentrations were analyzed for gradeclassification. Wood wastes were sampled from forest, living, construction and demolition, and industrial areas with origin. Moisture content of most wood wastes was ranged in 5$\sim$10%. VS (volatile solids) and ash contents of them showed > 95% and < 5%, respectively. Most wood wastes except wood for growing mushroom permitted the standard (low heating value $\geq$ 3,500 kcal/kg) for refusederived fuel. CCA (Cr, Cu, As) concentration of wood wastes used in bench, wasted fishing boat, and railroad crosstie was higher than that of the other ones. Cl content showed approximately 1.3% in wood box for fish and $\leq$ 0.2% in the other wood wastes. Cl content of all wood wasted used in this research permitted the standard (Cl $\leq$ 0.2%, dry weight basis) for refuse-derived fuel. If the wood wastes were classified in 3-grade, plywoods would be in 2nd grade, and MDF (medium density fiber), wooden bench, painted electric wire drum, wasted fishing boat, and railroad crosstie be in 3rd grade.