• Title/Summary/Keyword: Industrial Stock Market

Search Result 182, Processing Time 0.036 seconds

An intelligent early warning system for forecasting abnormal investment trends of foreign investors (외국인 투자자의 비정상적 중·장기매도성향패턴예측을 위한 지능형 조기경보시스템 구축)

  • Oh, Kyong Joo;Kim, Young Min
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.223-233
    • /
    • 2013
  • At local emerging stock markets such as Korea, Hong Kong, Singapore and Taiwan, foreign investors (FI) are recognized as important investment community due to the globalization and deregulation of financial markets. Therefore, it is required to monitor the behavior of FI against a sudden enormous selling stocks for the concerned local governments or private and institutional investors. The main aim of this study is to propose an early warning system (EWS) which purposes issuing a warning signal against the possible massive selling stocks of FI at the market. For this, we suggest machine learning algorithm which predicts the behavior of FI by forecasting future conditions. This study is empirically done for the Korean stock market.

Trading Strategies Using Reinforcement Learning (강화학습을 이용한 트레이딩 전략)

  • Cho, Hyunmin;Shin, Hyun Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.123-130
    • /
    • 2021
  • With the recent developments in computer technology, there has been an increasing interest in the field of machine learning. This also has led to a significant increase in real business cases of machine learning theory in various sectors. In finance, it has been a major challenge to predict the future value of financial products. Since the 1980s, the finance industry has relied on technical and fundamental analysis for this prediction. For future value prediction models using machine learning, model design is of paramount importance to respond to market variables. Therefore, this paper quantitatively predicts the stock price movements of individual stocks listed on the KOSPI market using machine learning techniques; specifically, the reinforcement learning model. The DQN and A2C algorithms proposed by Google Deep Mind in 2013 are used for the reinforcement learning and they are applied to the stock trading strategies. In addition, through experiments, an input value to increase the cumulative profit is selected and its superiority is verified by comparison with comparative algorithms.

Determinants of the Prices and Returns of Preferred Stocks (우선주가격 및 수익률 결정요인에 관한 연구)

  • Kim, San;Won, Chae-Hwan;Won, Young-Woong
    • Asia-Pacific Journal of Business
    • /
    • v.11 no.2
    • /
    • pp.159-172
    • /
    • 2020
  • Purpose - The purpose of this study is to investigate economic variables which have impact on the prices and returns of preferred stocks and to provide investors, underwriters, and policy makers with information regarding correlations and causal relations between them. Design/methodology/approach - This study collected 98 monthly data from Korea Exchange and Bank of Korea. The Granger causal relation analysis, unit-root test and the multiple regression analysis were hired in order to analyze the data. Findings - First, our study derives the economic variables affecting the prices and returns of preferred stocks and their implications, while previous studies focused mainly on the differential characteristics and related economic factors between common and preferred stocks. Empirical results show that the significant variables influencing the prices and returns of preffered stocks are consumer sentiment index, consumer price index, industrial production index, KOSPI volatility index, and exchange rate between Korean won and US dollar. Second, consumer sentiment index, consumer price index, and industrial production index have significant casual relations with the returns of preferred stocks, providing market participants with important information regarding investment in preferred stocks. Research implications or Originality - This study is different from previous studies in that preferred stocks themselves are investigated rather than the gap between common stocks and preferred stocks. In addition, we derive the major macro variables affecting the prices and returns of preferred stocks and find some useful causal relations between the macro variables and returns of preferred stocks. These findings give important implications to market participants, including stock investors, underwriters, and policy makers.

Cryptocurrency Auto-trading Program Development Using Prophet Algorithm (Prophet 알고리즘을 활용한 가상화폐의 자동 매매 프로그램 개발)

  • Hyun-Sun Kim;Jae Joon Ahn
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.105-111
    • /
    • 2023
  • Recently, research on prediction algorithms using deep learning has been actively conducted. In addition, algorithmic trading (auto-trading) based on predictive power of artificial intelligence is also becoming one of the main investment methods in stock trading field, building its own history. Since the possibility of human error is blocked at source and traded mechanically according to the conditions, it is likely to be more profitable than humans in the long run. In particular, for the virtual currency market at least for now, unlike stocks, it is not possible to evaluate the intrinsic value of each cryptocurrencies. So it is far effective to approach them with technical analysis and cryptocurrency market might be the field that the performance of algorithmic trading can be maximized. Currently, the most commonly used artificial intelligence method for financial time series data analysis and forecasting is Long short-term memory(LSTM). However, even t4he LSTM also has deficiencies which constrain its widespread use. Therefore, many improvements are needed in the design of forecasting and investment algorithms in order to increase its utilization in actual investment situations. Meanwhile, Prophet, an artificial intelligence algorithm developed by Facebook (META) in 2017, is used to predict stock and cryptocurrency prices with high prediction accuracy. In particular, it is evaluated that Prophet predicts the price of virtual currencies better than that of stocks. In this study, we aim to show Prophet's virtual currency price prediction accuracy is higher than existing deep learning-based time series prediction method. In addition, we execute mock investment with Prophet predicted value. Evaluating the final value at the end of the investment, most of tested coins exceeded the initial investment recording a positive profit. In future research, we continue to test other coins to determine whether there is a significant difference in the predictive power by coin and therefore can establish investment strategies.

A Study on the stock price prediction and influence factors through NARX neural network optimization (NARX 신경망 최적화를 통한 주가 예측 및 영향 요인에 관한 연구)

  • Cheon, Min Jong;Lee, Ook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.572-578
    • /
    • 2020
  • The stock market is affected by unexpected factors, such as politics, society, and natural disasters, as well as by corporate performance and economic conditions. In recent days, artificial intelligence has become popular, and many researchers have tried to conduct experiments with that. Our study proposes an experiment using not only stock-related data but also other various economic data. We acquired a year's worth of data on stock prices, the percentage of foreigners, interest rates, and exchange rates, and combined them in various ways. Thus, our input data became diversified, and we put the combined input data into a nonlinear autoregressive network with exogenous inputs (NARX) model. With the input data in the NARX model, we analyze and compare them to the original data. As a result, the model exhibits a root mean square error (RMSE) of 0.08 as being the most accurate when we set 10 neurons and two delays with a combination of stock prices and exchange rates from the U.S., China, Europe, and Japan. This study is meaningful in that the exchange rate has the greatest influence on stock prices, lowering the error from RMSE 0.589 when only closing data are used.

An Algorithm for Portfolio Selection Model

  • Kim, Yong-Chan;Shin, Ki-Young;Kim, Jong-Soo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.65-68
    • /
    • 2000
  • The problem of selecting a portfolio is to find Un investment plan that achieves a desired return while minimizing the risk involved. One stream of algorithms are based upon mixed integer linear programming models and guarantee an integer optimal solution. But these algorithms require too much time to apply to real problems. Another stream of algorithms are fur a near optimal solution and are fast enough. But, these also have a weakness in that the solution generated can't be guaranteed to be integer values. Since it is not a trivial job to tansform the scullion into integer valued one simutaneously maintaining the quality of the solution, they are not easy to apply to real world portfolio selection. To tackle the problem more efficiently, we propose an algorithm which generates a very good integer solution in reasonable amount of time. The algorithm is tested using Korean stock market data to verify its accuracy and efficiency.

  • PDF

A simulation for stock level considering client delivery due date in auto part industry (자동차 부품산업의 고객 요구 납기 충족을 위한 적정재고 수준에 관한 시뮬레이션 연구)

  • kim, Joonghoi;Kim, Young-Chun;Kang, Kyung Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.2
    • /
    • pp.131-138
    • /
    • 2014
  • Auto part industry supplies production for auto manufacturer and after market. These company have inventory for delivery. High inventory level can be good for delivery, but cost will be increase. Low inventory level can be customer unsatisfaction for delivery late. Low inventory level also is reason of low productivity by decreasing product batch size. These article suggest model for calculation a proper inventory level and prove a effect by simulation of some company.

Estimation of Smoothing Constant of Minimum Variance and its Application to Industrial Data

  • Takeyasu, Kazuhiro;Nagao, Kazuko
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.1
    • /
    • pp.44-50
    • /
    • 2008
  • Focusing on the exponential smoothing method equivalent to (1, 1) order ARMA model equation, a new method of estimating smoothing constant using exponential smoothing method is proposed. This study goes beyond the usual method of arbitrarily selecting a smoothing constant. First, an estimation of the ARMA model parameter was made and then, the smoothing constants. The empirical example shows that the theoretical solution satisfies minimum variance of forecasting error. The new method was also applied to the stock market price of electrical machinery industry (6 major companies in Japan) and forecasting was accomplished. Comparing the results of the two methods, the new method appears to be better than the ARIMA model. The result of the new method is apparently good in 4 company data and is nearly the same in 2 company data. The example provided shows that the new method is much simpler to handle than ARIMA model. Therefore, the proposed method would be better in these general cases. The effectiveness of this method should be examined in various cases.

Politic confrontation process analysis of the authorities since global banking crisis occurrence (글로벌 금융위기 발생이후 정책기관의 정책 대응과정 분석)

  • Park, Hyeong-Mok
    • Korean Business Review
    • /
    • v.22 no.1
    • /
    • pp.103-123
    • /
    • 2009
  • The uncertainty of international financial market was increased suddenly, since 2008 September 15th Lehman Brothers bankruptcy. In spite of the money market stabilization management of various nations, the stock market of the world was visible the features which slump and sudden rise are insecure. The reliability about dollarization was depreciated suddenly in depression of American money market, and the dollarization was converted with important currency comparison bearish trend. Relates with this, this thesis analyzed press information about the policies which the authorities confronts since global banking crisis after Lehman situation. And it provided various current points. Despite these meanings, this research has several critical points. So this thesis refers the critical points and presets research direction In future.

  • PDF

Does Earnings Quality Affect Companies' Performance? New Evidence from the Jordanian Market

  • SALEH, Isam;ABU AFIFA, Malik;ALSUFY, Fares
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.33-43
    • /
    • 2020
  • This study aims to investigate the importance of earnings quality as a determinant of companies' performance. It provides some empirical evidences from an emerging market, specifically from the Jordanian market. This study developed an econometric model for the effect of earnings quality on the companies' performance using empirical evidence. The study employs a panel data analysis method by using a sample of all Jordanian industrial public shareholding companies listed on Amman Stock Exchange (ASE) during 2010-2018. The results reveal that Return on Assets (ROA), Return on Equity (ROE), and Earnings Per Share (EPS) as proxies of company's performance are affected by the earnings quality. This provides the importance of positive earnings quality that eventually influences the companies' performance. The results of this study suggest that the higher control level on the managers' behavior and its outcome will have an effect on earnings quality, and thus the company's performance increases. As well as, high relevance of accounting information will improve earnings quality, and thus earnings quality with the interaction factors of the company's environment work on improving performance. As a conclusion, this study can work as a reference to assist standard setters, security analysts, regulators and other accounting-information users in appraising relation between the earnings quality and companies' performance.