• Title/Summary/Keyword: Industrial Innovation 3.0

Search Result 91, Processing Time 0.028 seconds

Factors Affecting Intention to Introduce Smart Factory in SMEs - Including Government Assistance Expectancy and Task Technology Fit - (중소기업의 스마트팩토리 도입의도에 영향을 미치는 요인에 관한 연구 - 정부지원기대와 과업기술적합도를 포함하여)

  • Kim, Joung-rae
    • Journal of Venture Innovation
    • /
    • v.3 no.2
    • /
    • pp.41-76
    • /
    • 2020
  • This study confirmed factors affecting smart factory technology acceptance through empirical analysis. It is a study on what factors have an important influence on the introduction of the smart factory, which is the core field of the 4th industry. I believe that there is academic and practical significance in the context of insufficient research on technology acceptance in the field of smart factories. This research was conducted based on the Unified Theory of Acceptance and Use of Technology (UTAUT), whose explanatory power has been proven in the study of the acceptance factors of information technology. In addition to the four independent variables of the UTAUT : Performance Expectancy, Effort Expectancy, Social Influence, and Facilitating Conditions, Government Assistance Expectancy, which is expected to be an important factor due to the characteristics of the smart factory, was added to the independent variable. And, in order to confirm the technical factors of smart factory technology acceptance, the Task Technology Fit(TTF) was added to empirically analyze the effect on Behavioral Intention. Trust is added as a parameter because the degree of trust in new technologies is expected to have a very important effect on the acceptance of technologies. Finally, empirical verification was conducted by adding Innovation Resistance to a research variable that plays a role as a moderator, based on previous studies that innovation by new information technology can inevitably cause refusal to users. For empirical analysis, an online questionnaire of random sampling method was conducted for incumbents of domestic small and medium-sized enterprises, and 309 copies of effective responses were used for empirical analysis. Amos 23.0 and Process macro 3.4 were used for statistical analysis. For accurate statistical analysis, the validity of Research Model and Measurement Variable were secured through confirmatory factor analysis. Accurate empirical analysis was conducted through appropriate statistical procedures and correct interpretation for causality verification, mediating effect verification, and moderating effect verification. Performance Expectancy, Social Influence, Government Assistance Expectancy, and Task Technology Fit had a positive (+) effect on smart factory technology acceptance. The magnitude of influence was found in the order of Government Assistance Expectancy(β=.487) > Task Technology Fit(β=.218) > Performance Expectancy(β=.205) > Social Influence(β=.204). Both the Task Characteristics and the Technology Characteristics were confirmed to have a positive (+) effect on Task Technology Fit. It was found that Task Characteristics(β=.559) had a greater effect on Task Technology Fit than Technology Characteristics(β=.328). In the mediating effect verification on Trust, a statistically significant mediating role of Trust was not identified between each of the six independent variables and the intention to introduce a smart factory. Through the verification of the moderating effect of Innovation Resistance, it was found that Innovation Resistance plays a positive (+) moderating role between Government Assistance Expectancy, and technology acceptance intention. In other words, the greater the Innovation Resistance, the greater the influence of the Government Assistance Expectancy on the intention to adopt the smart factory than the case where there is less Innovation Resistance. Based on this, academic and practical implications were presented.

MODIFICATION OF METAL MATERIALS BY HIGH TEMPERATURE PULSED PLASMA FLUXES IRRADIATION

  • Vladimir L. Yakushin;Boris A. Kalin;Serguei S. Tserevitionov
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1-1
    • /
    • 2000
  • The results of the modification of metal materials treated by high temperature pulst:d plasma fluxes (HTlPPF) with a specific power of incident flux changing in the $(3...100)10^5{]\;}W/cm^2$ range and a pulse duration lying from 15 to $50{\;}\mu\textrm{s}$ have been presented. The results of HTPPF action were studied on the stainless steels of 18Cr-l0Ni, 16Cr- 15Ni, 13Cr-2Mo types; on the structural carbon steels of (13...35)Cr, St. 3, St. 20, St. 45 types; on the tool steels of U8, 65G, ShHI5 types, and others; on nickel and high nickel alloy of 20Cr-45Ni type; on zirconium- and vanadium-base alloys and other materials. The microstructure and properties (mechanical, tribological, erosion, and other properties) of modified materials and surface alloying of metals exposed to HTPPF action have been investigated. It was found that the modification of materials by HTPPF resulted in a simultaneous increase of several properties of the treated articles: microhardness of the surface and layers of 40...60 $\mu\textrm{m}$ in depth, tribological characteristics (friction coefficient, wear resistance), mechanical properties ({\sigma_y}, {\;}{\sigma_{0.2}}.{\;}{\sigma_r}) on retention of the initial plasticity ($\delta$), corrosion resistance, radistanation erosion under ion irradiation, and others. The determining factor of the changes observed is the structural-phase modification of the near-surface layers, in particular, the formation of the fine cellular structure in the near-surface layers at a depth of $20{\;}{\mu\textrm{m}}$ with dimension of cells changing in the range from 0.1 to $1., 5{\;}\mu\textrm{m}$, depending on the kind of material, its preliminary treatment, and the parameters of plasma fluxes. The remits obtained have shown the possibility of purposeful surface alloying of metals exposed to HTPPF action over a depth up to 20...45 $\mu\textrm{m}$ and the concentration of alloying element (Ni, Cr, V) up to 20 wt.%. Possible industrial brunches for using the treatment have been also considered, as well as some results on modifying the serial industrial articles by HTPPF.

  • PDF

A Study on the Metadata Schema for the Collection of Sensor Data in Weapon Systems (무기체계 CBM+ 적용 및 확대를 위한 무기체계 센서데이터 수집용 메타데이터 스키마 연구)

  • Jinyoung Kim;Hyoung-seop Shim;Jiseong Son;Yun-Young Hwang
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.161-169
    • /
    • 2023
  • Due to the Fourth Industrial Revolution, innovation in various technologies such as artificial intelligence (AI), big data (Big Data), and cloud (Cloud) is accelerating, and data is considered an important asset. With the innovation of these technologies, various efforts are being made to lead technological innovation in the field of defense science and technology. In Korea, the government also announced the "Defense Innovation 4.0 Plan," which consists of five key points and 16 tasks to foster advanced science and technology forces in March 2023. The plan also includes the establishment of a Condition-Based Maintenance system (CBM+) to improve the operability and availability of weapons systems and reduce defense costs. Condition Based Maintenance (CBM) aims to secure the reliability and availability of the weapon system and analyze changes in equipment's state information to identify them as signs of failure and defects, and CBM+ is a concept that adds Remaining Useful Life prediction technology to the existing CBM concept [1]. In order to establish a CBM+ system for the weapon system, sensors are installed and sensor data are required to obtain condition information of the weapon system. In this paper, we propose a sensor data metadata schema to efficiently and effectively manage sensor data collected from sensors installed in various weapons systems.

Development of Inspection System for Surface of a Shock Absorber Rod using Machine vision (머신비전을 이용한 업쇼버 로드의 표면검사 시스템 개발)

  • Kim, Seong-Jin;Lee, Seong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3416-3422
    • /
    • 2014
  • A shock absorber rod is located in the center of the absorber piston and is responsible for the reciprocating movement portion. If it has surface defects, the damping performance of product will be adversely affected. A rod surface has gloss by heat treatment. Therefore, it is difficult to find a defect, such as dust, imprints, and blowholes. Because a total inspection is achieved by visual inspection by workers, it causes eyestrain and the quality of the product is not constant. In this paper, a machine vision system was developed to find a defect using a line-scan camera. The machine can detect surface defects than 0.3mm. To minimize the occurrence probability of defects on the inspection process, the developed auto inspection system had an automatic feeding system and incorporated a protection system. Through the development of this system, which relies on the operator's visual inspection of the surface of the shock absorber, the Rod inspection system constructed quality inspection standards and standardized tests to ensure improved reliability.

Risk Structure Analysis for Cost of Capital : A Demonstrative Study using Financial Indices

  • Ling, Feng;Suzuki, Tomomichi;Ojima, Yoshikazu
    • International Journal of Quality Innovation
    • /
    • v.7 no.3
    • /
    • pp.1-14
    • /
    • 2006
  • Economic value added (EVA) is introduced on two levels: as index for evaluation of corporation and as index for evaluation of business unit. In the latter case, application of one and the same cost of capital to all business units of a business corporation may be possible, but it is a fundamental policy for EVA to apply different cost of capital to business units with different risks. Estimate of cost of capital of business units is a problem to be resolved. The author, focusing on the question of the estimate of cost of capital of business units, has conducted a demonstrative study on risk structure of cost of capital estimates by using financial indices of Japanese manufacturers (37 automotive industries, 141 electrical and electronic machinery industries, 63 food processing industries, 98 chemical industries, 125 general machinery industries) for a period of 5 years from 1995 to 1999. The author presumes that $\beta$ is explained by a regression formula ${\beta}=B_0+{\Sigma}B_iY_i+{\alpha}$ ($Y_i$: financial indices) and selects 40 explanatory variables from financial statements as risk components. Using their financial indices, the author concludes through a series of statistical analyses that there is a good likelihood of estimating cost of capital for Japanese industries and is convinced that it will lead to more reliable and practical results by assigning averages and variances to 40 primary financial indices for a period of 3 to 5 years selected in this demonstrative study.

Crystal Structures, Electrical Conductivities and Electrochemical Properties of LiCo1-XMgxO2(x=0.03) for Secondary Lithium Ion Batteries (리튬 2차 전지용 LiCo1-XMgxO2(x=0.03)의 결정구조, 전기전도도 및 전기화학적 특성)

  • Kim, Ho-Jin;Chung, Uoo-Chang;Jeong, Yeon-Uk;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.9 s.280
    • /
    • pp.602-606
    • /
    • 2005
  • [ $LiCoO_{2}$ ] is the most common cathode electrode materials in Lithium-ion batteries. $LiCo_{0.97}Mg_{0.03}O_2$ was synthesized by the solid-state reaction method. We investigated crystal structures, electrical conductivities and electrochemical properties. The crystal structure of $LiCo_{0.97}Mg_{0.03}O_2$ was analyzed by X-ray powder diffraction and Rietveld refinement. The material showed a single phase of a layered structure with the space group R-3m. The lattice parameter(a, c) of $LiCo_{0.97}Mg_{0.03}O_2$ was larger than that of $LiCoO_2$. The electrical conductivity of sintered samples was measured by the Van der Pauw method. The electrical conductivities of $LiCoO_2$ and $LiCo_{0.97}Mg_{0.03}O_2$ were $2.11{\times}10^{-4}\;S/cm$ and $2.41{\times}10^{-1}\;S/cm$ at room temperature, respectively. On the basis of the Hall effect analysis, the increase in electrical conductivities of $LiCo_{0.97}Mg_{0.03}O_2$ is believed due to the increased carrier concentrations, while the carrier mobility was almost invariant. The electrochemical performance was investigated by coin cell test. $LiCo_{0.97}Mg_{0.03}O_2$ showed improved cycling performance as compared with $LiCoO_2$.

Study on the development of convergence subjects for departments of emergency medical technology in preparation for the fourth industry revolution (4차 산업혁명 시대 응급구조(학)과 융복합 교과목 개발을 위한 연구)

  • Jung, Sang-Woo;Koh, Bong-Yeun;Lee, Jung-Eun;Hong, Sung-Gi;Kim, Soo-Tae
    • The Korean Journal of Emergency Medical Services
    • /
    • v.25 no.2
    • /
    • pp.71-97
    • /
    • 2021
  • Purpose: This study aimed to examine the development and improvement direction of university education according to job type and investigate the types of knowledge required for employment after graduation for departments of emergency medical technology in preparation for the era of the fourth industrial revolution in a converged society. Methods: From June 3 to June 10, 2019, data were collected through structured questionnaires from 90 paramedics working in firefighting, hospitals, different industries, and emergency patient transportation. Data were analyzed using the software SPSS version 18.0. Results: For employment after graduation in departments of emergency medical technology, character and sincerity education should be strengthened. To prepare for the fourth industrial revolution, educational innovations such as improving the field practice system and devising a convergence curriculum are needed. Preparation for the fourth industrial revolution should be accomplished through the development of convergence subjects such as forensic science, information and communications technology, and safety engineering. Ninety percent of the study respondents indicated their need for convergence subjects. Conclusion: The demands of future society should be responded to flexibly by holding and conducting convergence subjects. Furthermore, preparations should be made in anticipation of a shortage of 120,000 college freshmen for the 2024-2025 school year by increasing the competitiveness of departments of emergency medical technology.

Using Analytic Network Process to Establish Performance Evaluation Indicators for the R&D Management Department in Taiwan's High-tech Industry

  • Liu, Pang-Lo;Tsai, Chih-Hung
    • International Journal of Quality Innovation
    • /
    • v.8 no.3
    • /
    • pp.156-172
    • /
    • 2007
  • The high-tech industry is the economic lifeline for Taiwan. Its characteristics are short product life cycle, rapid changes in the market, and a high obsolescence rate for new products. Under globalization, the high-tech industry has adopted Information Technology (IT) to shorten the manufacturing process, reduce costs and conduct product research and development (R&D) to increase the core competence of enterprises and achieve the goal of sustainable operations. Enterprises should actively strengthen their integration with internal and external resources and lead in R&D management to increase industrial operating performance. Effectively managing operations and R&D management evaluation in Taiwan's High-tech Industry has become a critical subject. This study adopted 4 major Balanced Scorecard (BSC) perspectives to establish the Total Performance Evaluation Indicators for the R&D management department in Taiwan's High-tech Industry. The Analytic Network Process (ANP) was applied to evaluate the overall performance of the R&D management department. The research framework is divided into 2 phases. The first phase is combined with the 4 major perspectives, Financial, Customer, Internal Business Process and Learning and Growth, as the related indicators for each measurement perspective. The Key Performance Indicators (KPI) were selected using Factor Analysis to identify the key factor from the complicated indicators. The relationship between the characteristics of each BSC's evaluation perspective is dependence and feedback. This study applied ANP to conduct the calculation and adjustment of correlation between each KPI, and determine on their relative weights for the objective KPI. The "Financial Perspective" for R&D management department in Taiwan's High-tech Industry focused on the budget achievement rate of R&D management. The weight indicator value is (0.05863). The "Customer Perspective" focused on problem-solving satisfaction. The weight value of this indicator is (0.17549). The "Internal Business Process Perspective" focused on the quantity and quality of R&D. The weight value of this indicator is (0.13506). The "Learning and Growth Perspective" focused on improving competence in the research personnel's professional techniques. The weight value of this indicator is (0.02789). From the total weighting indicators, the order of the Performance Indicators for the R&D management department in Taiwan's High-tech Industry is: (1) Customer Perspective; (2) Internal Business Process Perspective; (3) Financial Perspective; and (4) Learning and Growth Perspective.

A Comparative Study of Smart Manufacturing Innovation Supply Industry in Germany and Korea (독일과 한국의 스마트 제조혁신 전략에 대한 비교분석 및 시사점 - 양국의 공급산업 전략을 중심으로 -)

  • Sang-Jin Lee;Yun-Hyeok Choi;Jae Kyu Myung
    • Journal of Practical Engineering Education
    • /
    • v.14 no.3
    • /
    • pp.601-608
    • /
    • 2022
  • This study examines the current status of smart manufacturing innovation policies in Germany and Korea, compares and analyzes the supply industry strategies of both countries, and suggests the direction for Korea's smart manufacturing innovation supply industry. Germany's supply industry strategy aims to strengthen the market dominance of domestic suppliers through high technology, compatibility, and high reliability based on reference for global demanding companies. On the other hand, the Korea's supply industry strategy remains at the level improvement of the demanding companies by stage, so it is time to take a long-term and consistent response with the goal of implementing smartization at the advanced level. By referring to Germany's supply industry strategy for the advancement of smart factories, it was intended to help in establishing government support policies and supplier strategies. In addition, based on the analysis results of the supply industry strategies of both countries, improvement measures for the advancement of Korea's smart factories were presented. Ultimately, the contents of this study can be used as basic data for policy establishment to strengthen the industrial competitiveness of Korea's small and medium-sized suppliers.

Optimal Metal Dose of Alternative Cathode Catalyst Considering Organic Substances in Single Chamber Microbial Fuel Cells

  • Nam, Joo-Youn;Moon, Chungman;Jeong, Emma;Lee, Won-Tae;Shin, Hang-Sik;Kim, Hyun-Woo
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.145-150
    • /
    • 2013
  • Optimal preparation guidelines of a cathode catalyst layer by non-precious metal catalysts were evaluated based on electrochemical performance in single-chamber microbial fuel cells (MFCs). Experiments for catalyst loading rate revealed that iron(II) phthalocyanine (FePc) can be a promising alternative, comparable to platinum (Pt) and cobalt tetramethoxyphenylporphyrin (CoTMPP), including effects of substrate concentration. Results showed that using an optimal FePc loading of $1mg/cm^2$ was equivalent to a Pt loading of $0.35mg/cm^2$ on the basis of maximum power density. Given higher loading rates or substrate concentrations, FePc proved to be a better alternative for Pt than CoTMPP. Under the optimal loading rate, it was further revealed that 40 wt% of FePc to carbon support allowed for the best power generation. These results suggest that proper control of the non-precious metal catalyst layer and substrate concentration are highly interrelated, and reveal how those combinations promote the economic power generation of single-chamber MFCs.