• Title/Summary/Keyword: Industrial Design Engineering

Search Result 5,500, Processing Time 0.036 seconds

Process Design for the Hot Forging of Asymmetric Rail to Symmetric Rail

  • Cho, Hae-Yong;Kim, Yong-Yun;Lee, Ki-Joung;Lee, Sung-Ho;Oh, Byung-Ki;Nam, Gi-Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1559-1564
    • /
    • 2004
  • The process design of hot forging, asymmetric to symmetric rib-web shaped steel, which is used for the turnout of express rails has been studied. Owing to the great difference in shape between the initial billet and the final forged product, it is impossible to hot forge the rail in a single stage operation. The numerical simulation for hot forging of asymmetric shape to symmetric shape was carried out by using commercial FEM code, DEFORMTM-2D. For comparison with the simulation results, a experiment of flow analysis using plasticine was also carried out. The results of the flow experiment showed good agreement with those of the simulation.

A Seismic Stability Design by the KEPIC Code of Main Pipe in Reactor Containment Building of a Nuclear Power Plant (원자력 발전소 RCB 내 중요배관의 KEPIC 코드에 의한 내진 안전성 설계)

  • Yi, Hyeong-Bok;Lee, Jin-Kyu;Kang, Tae-In
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.233-238
    • /
    • 2011
  • In piping design of nuclear power plant facilities, the load stress according to self-weight is important for design values in test run(shutdown and starting). But sometimes it needs more studies, such as seismic analysis of an earthquake of power plant area and fatigue life and stress of thermal expansion and anchor displacement in operating run. In this paper, seismic evaluations were performed to nuclear piping system of Shin-Kori NO. 3&4 being built in Pusan lately. Results of seismic analysis are evaluated on basis of KEPIC MN code. The structural integrity on RCB piping system was proved.

A Study on Man-Machine System in Human Factors Engineering (인간-기계시스템에 관한 고찰)

  • 이준영
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.5 no.6
    • /
    • pp.33-39
    • /
    • 1982
  • In the design of some systems, the circumstance may require a determination as to whether a giver information input or processing function can best be performed by an individual or by some physical components of a system. In the consideration of human factors, also, in the design of equipment, facilities, and other physical items that people use, there are certain basic stages or processes that typically have to be carried out. The main purpose of this paper is study fundamental man-machine system assumptions in Human Factors Engineering. Therefore, this paper will deal with certain human factors that may be relevant to the design consideration that relate to human information - receiving and processing functions.

  • PDF

Development of Simple Example of CFD Course in Mechanical Engineering Curriculum (I) (Laminar Pipe Flow) (기계공학교육과정에서의 전산유체동역학의 기초예제개발 (I) (수평 원관의 층류 유동))

  • Lee, Sung-Riong;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.72-80
    • /
    • 2018
  • With the ever increasing advances in computers and their computing power, computational fluid dynamics(CFD) has become an essential engineering tool in the design and analysis of engineering applications. Accordingly, many universities have developed and implemented a course on CFD for undergraduate students. On the other hand, many professors have used industrial examples supplied by computational analysis software companies as CFD examples. This makes many students think of CFD as difficult and confusing. This paper presents a simple CFD example used in the department of mechanical design engineering of Kangwon National University and shows its effectiveness. Most students answered that a simple CFD example is more comprehensive than an industrial example. Therefore, it is necessary to develop simple computational analysis problems in the engineering education field.

Effects of Design Factors of the Instrument Cluster Panel on Consumers' Affection Applying Robust Design (강건 설계기법을 이용한 자동차 게이지 클러스터의 디자인 요소와 고객 감성에 관한 연구)

  • Jung, Ga-Hun;Park, Sung-Joon;Kim, Seong-M.;Jung, Eui-S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • It is known from consumer surveys that the interior design of cars greatly influences on consumers' affection. Most notably, the instrument panel which occupies the driver's attention while driving would be one of the main components that affect consumer's affection, but the designer does not often put due importance to this design component. The purpose of this study is to define consumers' affection on the instrument cluster panel in terms of its design factors: color of panel lighting and layout of meters as independent factors. Semantic differentials or affective adjectives that are related to the instrument panel were first derived from surveys, existing studies and the available literature. Then, representative affective factors were drawn using factor analysis and multi-dimensional scaling (MDS). Evaluation of the instrument panel was performed and analyzed by Taguchi's robust design to provide more robust results under various noise factors which are color and material of car interior. Experiment revealed that consumers had five affective factors on the instrument panel and luxurious, charming, and visible affections are grouped into a factor and unique and dynamic affections in another factor. Evaluation of the instrument panel by Taguchi's robust design found that the white color of panel lighting and the panel with four meters was the most preferred design in terms of both the affection of luxury and uniqueness.

Design of High Precision Spindle System for Ferrule Grinding Machine (페룰 가공용 고정밀 주축시스템 설계)

  • 편영식;박정현;이건범;요꼬이요시유끼;여진욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.15-19
    • /
    • 2002
  • With the rapid development of industrial technologies, the demand for high precision products has been increasing drastically. For this reason, the need for developing of high performance machine tool, which can ensure high precision, is desired in the industrial fields. Technologies on the spindle system manufacture, guideway manufacture, error compensation, design of bed structure, protection against vibrations, and system integration are core technology for developing of high precision machine tools. Especially, among these, design of spindle system, which is leading precision and manufacturing technique. is one of the most important technologies. A high speed and high precision spindle system, which will be used for final machining of ferrule, is designed considering the effect caused by thermal, cutting torque, cutting farce, and work-piece materials. The detail process of analysis is presented.

  • PDF

Design of Step-Stress Accelerated Life Tests for Weibull Distributions with a Nonconstant Shape Parameter

  • Kim, C. M.;D. S. Bai
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.4
    • /
    • pp.415-433
    • /
    • 1999
  • This paper considers the design of step-stress accelerated life tests for the Weibull distribution with a nonconstant shape parameter under Type I censoring. It is assumed that scale and shape parameters are log-linear functions of (possibly transformed) stress and that a cumulative exposure model holds for the effect of changing stress. The asymptotic variance of the maximum likelihood estimator of a stated quantile at design stress is used as an optimality criterion. The optimum three step-stress plans are presented for selected values of design parameters and the effects of errors in pre- estimates of the design parameters are investigated.

  • PDF

The TRIZ Theory and it′s Application (TRIB이론과 응용)

  • 이장용
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.2
    • /
    • pp.25-31
    • /
    • 2001
  • The TRIZ theory which was invented by Russian scientist Genrich Altshuller provides a systematic methodology for innovative engineering design in place of brainstorming. synectics, analogical thinking, which seeming1y high efficiency are still variations of the trials and errors method. TRIZ theory gives designer the ability to explore design solutions in fields other than his (her) own experience. Among several TRIZ theories, most widely used techniques in engineering field are contradiction theory. Su-Field analysis, physical phenomenon and effect and directed production evolution. which are described in this thesis and its application to conceptual design of high-speed train is performed as a case study of TRIZ theory.

  • PDF

Development of an expert GUI-system for design optimization of industrial plant structures (산업용 설비구조물 설계지원 GUI시스템 개발)

  • 이만승;백점기;이제명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.93-100
    • /
    • 2004
  • In this study, a support system is developed for the design of facility structures. This system is called Expert System for Design Optimization of Industrial Plant Structures (EDIPS). Based on the strength assessment of steel-plate structures such as ships and off-shore structures, a detailed load calculation method is developed utilizing the database of various plant structures. The method, developed in support of design and for the assessment of strength, constitutes a part of EDIPS. By providing relevant and consistent design data and procedures to engineers, EDIPS is expected to be useful as an important development tool for maritime distribution system that is used to control the transportation by ships and loading unloading, and storage of cargo.

  • PDF

The Economic Design of VSS $\bar{x}$ Control Chart for Compounding Effect of Double Assignable Causes (두 가지 복합 이상원인 영향이 있는 공정에 대한 VSS$\bar{x}$관리도의 경제적 설계)

  • Sim Seong-Bo;Kang Chang-Wook;Kang Hae-Woon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.2
    • /
    • pp.114-122
    • /
    • 2004
  • In statistical process control applications, variable sample size (VSS) $\bar{X}$ chart is often used to detect the assignable cause quickly. However, it is usually assumed that only one assignable cause results in the out-of-control in the process. In this paper, we propose the algorithm to minimize the function of cost per unit time and compare the economic design and the statistical design by use of the value of cost per unit time. We consider double assignable causes to occur with compound in the process and adopt the Markov chain approach to investigate the statistical properties of VSS $\bar{X}$ chart. A procedure that can calculate the control chart's parameters is proposed by the economic design.