• Title/Summary/Keyword: Industrial Byproduct

Search Result 75, Processing Time 0.021 seconds

Biomethanol Conversion from Biogas Produced by Anaerobic Digestion (혐기소화에 의한 Biogas 생산과 Biomethanol 전환에 관한 고찰)

  • Nam, Jae Jak;Shin, Joung Du;Hong, Seung Gil;Hahm, Hyun Sik;Park, Woo Kyun;So, Kyu Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.4
    • /
    • pp.93-103
    • /
    • 2006
  • Biogas is a byproduct after anaerobic digestion of organic materials and has been used as an energy source for heating and generating electricity. Demands of methanol for fuel mixed with gasoline and reactant in biodiesel production are steadily being increased. In this review, we summarized recent advancements in direct partial oxidation of methane to methanol with the brief history of methanol synthesis. The steam reforming and the catalytic oxidation of methane to methanol were compared, the former of which are mainly used in industrial scale and the latter in a stage of research and development. On the basis of this review, the possibility of methanol conversion from biogas was proposed in the aspects of the technological feasibility and the economical practicability.

  • PDF

Size, Shape, and Crystal Structure-dependent Toxicity of Major Metal Oxide Particles Generated as Byproducts in Semiconductor Fabrication Facility (반도체 가공 작업환경에서 부산물로 발생되는 주요 금속산화물의 입자 크기, 형상, 결정구조에 따른 독성 고찰)

  • Choi, Kwang-Min
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.119-138
    • /
    • 2016
  • Objectives: The purpose of this study is to review size, shape, and crystal structure-dependent toxicity of major metal oxide particles such as silicon dioxide, tungsten trioxide, aluminum oxide, and titanium dioxide as byproducts generated in semiconductor fabrication facility. Methods: To review the toxicity of major metal oxide particles, we used various reported research and review papers. The papers were searched by using websites such as Google Scholar and PubMed. Keyword search terms included '$SiO_2$(or $WO_3$ or $Al_2O_3$ or $TiO_2$) toxicity', 'health effects $SiO_2$(or $WO_3$ or $Al_2O_3$ or $TiO_2$). Additional papers were identified in references cited in the searched papers. Results: In various cell lines and organs of human and animals, cytotoxicity, genotoxicity, hepatoxicity, fetotoxicity, neurotoxicity, and histopathological changes were induced by silicon dioxide, tungsten trioxide, aluminium oxide, and titanium dioxide particles. Differences in toxicity were dependent on the cell lines, organs, doses, as well as the chemical composition, size, surface area, shape, and crystal structure of the particles. However, the doses used in the reported papers were higher than the possible exposure level in general work environment. Oxidative stress induced by the metal oxide particles plays a significant role in the expression of toxicity. Conclusions: The results cannot guarantee human toxicity of the metal oxide particles, because there is still a lack of available information about health effects on humans. In addition, toxicological studies under the exposure conditions in the actual work environment are needed.

Economic Feasibility Study for CO2 Ocean Sequestration (CO2 해양격리시스템의 기술.경제적 가능성평가)

  • Park, Se-Hun;Oh, Wee-Yeong;Kwon, Moon-Sang
    • Ocean and Polar Research
    • /
    • v.27 no.4
    • /
    • pp.451-461
    • /
    • 2005
  • The $CO_2$ storage in geologic and oceanic reservoirs is considered to be one of the carbon management strategies for responding to global climate change. Ocean carbon sequestration is purposeful storage acceleration into the ocean of large amounts of carbon that would accumulate in the atmosphere and naturally enter the ocean over a longer timespan. Some technologies for $CO_2$ ocean sequestrations have been developed as a nation project. However, $CO_2$ ocean sequestrations are attractive because they have the advantage of vast capacity sequestration far away from industrial areas, and offer easier monitoring whereas less economic advantage has been indicated as one of the key barriers compared with $CO_2$ geosphere sequestration, which is produced as a byproduct. In this paper, a conceptual design for $CO_2$ ocean sequestration is introduced, and the preliminary examination is described. As a result, the $CO_2$ price, US$ 24/t shows far away from the economics. The causes come from the expensive $CO_2$ recovery cost and the low $CO_2$ price. The expensive $CO_2$ recovery cost is because too much electricity and water are consumed. In order to look for an economic balance point for $CO_2$ ocean sequestration, NPV=0, it is increases the $CO_2$ price. Finally 60.4$ per ton is found to be the balance price.

Study of Non Sintered Cement Mortar Using Nanoslag and Alkali Activator (나노슬래그와 알칼리 자극제를 활용한 비소성 시멘트 모르타르에 관한 연구)

  • Jeong, Sung-Wook;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.6
    • /
    • pp.61-66
    • /
    • 2010
  • As global warming has had harmful effects on the environment, the construction industry has made efforts to reduce the amount of $CO_2$ generated in the process of cement production. There is an urgent need for an alternative material that can replace cement. To improve the initial strength and economical efficiency pointed out as problems, this research was conducted for Blast Furnace Slag (BFS), an industrial byproduct. Non-sintering cement (NSC) was used by minimizing the amount of high-priced alkali activators. By using Nano-technology, fineness has been maximized, to enhance the initial strength of BFS. This research is based on non-sintered cement replaced by nano-slag using alkali activators, and the fundamental properties and quality of the non-sintered cement were investigated. A variety of activators were used, up to 10 percent of the slag weight. This research aims to present fundamental data through a comparative analysis of flexural strength, compressive strength, time of setting, diabetic temperature, and rising heat.

Evaluation of Strength and Durability of Mortar using Ferronickel Slag Powder and Admixtures (페로니켈슬래그 미분말 및 혼화재의 복합사용에 따른 모르타르의 강도 및 내구성 평가)

  • Jo, Seol-Ah;Yoo, Jeong-Hwan;Park, Sang-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.262-270
    • /
    • 2019
  • Ferronickel slag, which is an industrial byproduct, is activated by mechanochemical reaction as a nonferrous metal and can be used as an admixture. Therefore, ferronickel slag is used as a substitute resource of admixture. In this study, to evaluate the effect of mixed of ferronickel slag powder and admixture, a mortar using a mixture of ferronickel slag powder, quicklime, gypsum and calcium chloride was fabricated by vibrated and rolled manufacturing method. Strength were evaluated by flexural and compressive strength tests, and durability was evaluated by performing chlorine ion penetration resistance and chemical resistance test. When the substitution ratio of ferronickel slag powder is constant, it is considered that the mixed use of quicklime, gypsum and calcium chloride as admixtures increases the performance.

Screening, Cloning, Expression and Characterization of New Alkaline Trehalose Synthase from Pseudomonas monteilii and Its Application for Trehalose Production

  • Trakarnpaiboon, Srisakul;Bunterngsook, Benjarat;Wansuksriand, Rungtiva;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1455-1464
    • /
    • 2021
  • Trehalose is a non-reducing disaccharide in increasing demand for applications in food, nutraceutical, and pharmaceutical industries. Single-step trehalose production by trehalose synthase (TreS) using maltose as a starting material is a promising alternative process for industrial application due to its simplicity and cost advantage. Pseudomonas monteilii TBRC 1196 was identified using the developed screening method as a potent strain for TreS production. The TreS gene from P. monteilii TBRC 1196 was first cloned and expressed in Escherichia coli. Purified recombinant trehalose synthase (PmTreS) had a molecular weight of 76 kDa and showed optimal pH and temperature at 9.0 and 40℃, respectively. The enzyme exhibited >90% residual activity under mesophilic condition under a broad pH range of 7-10 for 6 h. Maximum trehalose yield by PmTreS was 68.1% with low yield of glucose (4%) as a byproduct under optimal conditions, equivalent to productivity of 4.5 g/l/h using enzyme loading of 2 mg/g substrate and high concentration maltose solution (100 g/l) in a lab-scale bioreactor. The enzyme represents a potent biocatalyst for energy-saving trehalose production with potential for inhibiting microbial contamination by alkaline condition.

Defatted Soybean Meal-Based Edible Film Development (탈지 대두박 소재 가식성 생고분자 필름의 개발)

  • Lee, Hanna;Paek, Hee Jeong;Min, Sea Cheol
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.305-310
    • /
    • 2011
  • Edible films were developed from defatted soybean meal (DSM), a byproduct from the soy product industry, investigating the effects of the concentrations of DSM and glycerol and the treatment of high pressure homogenization (HPH) on color, water vapor permeability, and tensile properties of the films. The physical properties of the developed films (DSM films) were compared to those of the films made of soy proteins isolated from the DSM. DSM films were obtained by drying film-forming solutions prepared with DSM powder, glycerol, and water and with and without HPH at 152 MPa. HPH resulted in the formation of continuous and uniform films. Water vapor permeability of the films increased with increase in the concentration of glycerol and decreased by high pressure homogenization. The increase in the glycerol concentration in the film-forming solution prepared without HPH decreased the tensile strength and elastic modulus of the films. However, this effect was not observed with the HPH-treated solution. DSM films possessed higher tensile strength and percentage elongation than the film of soy protein, implying the potential for the DSM film to be applied to food product as an edible film.

Characteristics of Red mud Ceramics according to Sintering Temperature and Contents of Red Mud from Industrial Byproducts (산업부산물 레드머드 첨가량에 따른 소성온도별 레드머드 세라믹의 특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju;Lee, Min-Hi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.5
    • /
    • pp.401-409
    • /
    • 2019
  • This paper aims to recycle red mud from a byproduct in the alumina industry as an alternative raw material for depleted natural resources. In order to apply red mud as a ceramic material, red mud ceramics were prepared according to mixing and temperature in a laboratory environment. Compared with KS L 4201 in terms of compression ratios and absorptions, it is found that two kinds of conditions for one type and three conditions for two types meet the standard. When red mud is used as a clay brick raw material, the substitution ratio of red mud is 10% or less, and the firing temperature is considered to be appropriate at $1200^{\circ}C$. In order to apply red mud to clay brick raw material in actual field, various samples and firing temperature should be considered in the future.

Bactericidal Efficacy of Non-thermal DBD Plasma on Staphylococcus aureus and Escherichia coli (비열 유전체장벽방전 플라즈마의 포도상구균 및 대장균 살균효과)

  • Kim, Keyyoung;Paik, Namwon;Kim, Yonghee;Yoo, Kwanho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.1
    • /
    • pp.61-79
    • /
    • 2018
  • Objectives: The objective of this study was to examine the effect of non-thermal dielectric barrier discharge(DBD) plasma on decontamination of Staphylococcus aureus(S. aureus) and Escherichia coli(E. coli) as common pathogens. Methods: This experiment was carried out in a chamber($0.64m^3$)designed by the authors. The plasma was continuously generated by a non-thermal DBD plasma generator(Model TB-300, Shinyoung Air tech, Korea). Suspensions of S. aureus and E. coli of 0.5 McFarland standard($1.5{\times}10^8CFU/mL$) were prepared using a Densi-Check photometer(bio $M{\acute{e}}rieux$, France). The suspensions were diluted1:1000 in sterile PBS solutions(approximately$10^{4-5}CFU/mL$) and inoculated on tryptic soy agar(TSA) in Petri dishes. The Petri dishes(80mm internal diameter)were exposed to the non -thermal DBD plasma in the chamber. Results: The results showed that 95% of S. aureus colonies were killed after a six-hour exposure to the DBD plasma. In the case of E. coli, it took two hours to kill 100% of the colonies. The gram-negative E. coli had a greater reduction than the gram-positive S. aureus. This difference may be due to the structure of their cell membranes. The thickness of gram-positive bacteria is greater than that of gram-negative bacteria. The S. aureus is more resistant to DBD plasma exposures than is E. coli. It should be noted that average concentrations of ozone, a byproduct of the DBD plasma generator, were monitored throughout the experiment and the results were well below the criteria, 50 ppb, recommended by the Korean Ministry of the Environment. Thus, non-thermal DBD plasma is deemed safe for use in hospital and public facilities. Conclusions: There was evidence that non-thermal DBD plasma can effectively kill S. aureus and E. coli. The results indicate that DBD plasma technology can greatly contribute to the control of infections in hospitals and other public and private facilities.

Physiochemical Characteristics and its Applicable Potential of Blast Furnace Slag Grout Mixtures of Sodium Silicate and Calcium Hydroxide (규산소다 및 수산화칼슘을 적용한 고로슬래그 그라우트의 적용성 및 물리화학적 특성)

  • Kim, Joung-Souk;Yoon, Nam-Sik;Xin, Zhen-Hua;Moon, Jun-Ho;Park, Young-Bok;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.200-207
    • /
    • 2019
  • Cement is one of the most commonly used materials in the construction and civil engineering industry. However, emissions of carbon dioxide generated during the production of cement have been linked to climate change and environment pollutants. In order to replace cement, many studies have been actively performed research to utilizing Blast Furnace Slag(BFS), which is a byproduct of the steel industry. This study aims to investigate the physiochemical properties of the BFS powder based grout to determine whether it can be used as an environment-friendly grout material. As a fine powder, BSF can be used instead of cement grout due to its potential hydraulic property. BSF has also been known for its ability to strengthen materials long-term and to densify the internal structure of concrete. In order to investigate the physicochemical properties of the BFS powder based grout as a grout material, in this study assessment tests were performed through a gel-time measurement, uniaxial compressive strength, and chemical resistance tests, and heavy-metal leaching test. Characteristics and advantages of the slag were studied by comparing slag and cement in various methods.