• Title/Summary/Keyword: Inductively Coupled Plasma Mass Spectrometry

Search Result 237, Processing Time 0.023 seconds

Determination of Bi Impurity in Lead Stock Standard Solutions by Hydride-generation Inductively Coupled Plasma Mass Spectrometry

  • Park, Chang J.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.233-236
    • /
    • 2004
  • Total impurity analysis of a primary standard solution is one of the essential procedures to determine an accurate concentration of the standard solution by the gravimetry. Bi impurity is determined in Pb standard solutions by inductively coupled plasma mass spectrometry (ICP-MS). The direct nebulization of the Pb standard solution produces a significant amount of the Pb matrix-induced molecular ions which give rise to a serious spectral interference to the Bi determination. In order to avoid the spectral interference from the interferent $^{208}PbH^+$, the hydride generation method is employed for the matrix separation. The Bi hydride vapor is generated by reaction of the sample solution with 1% sodium borohydride solution. The vapor is then directed by argon carrier gas into the ICP after separation from the mixture solution in a liquid-gas separator made of a polytetrafluoroethylene membrane tube. The presence of 1000 ${\mu}$g/mL Pb matrix caused reduction of the bismuthine generation efficiency by about 40%. The standard addition method is used to overcome the chemical interference from the Pb matrix. Optimum conditions are investigated for the hydride-generation ICPMS. The detection limit of this method is 0.5 pg/mL for the sample solutions containing 1000 ${\mu}$g/mL Pb matrix.

Extraction Chromatographic Separation of Technetium-99 from Spent Nuclear Fuels for Its Determination by Inductively Coupled Plasma-Mass Spectrometry (유도결합플라스마 질량분석을 위한 사용후핵연료 중 테크네튬-99의 추출크로마토그래피 분리)

  • Suh, Moo-Yul;Lee, Chang-Heon;Han, Sun-Ho;Park, Yeong-Jae;Jee, Kwang-Yong;Kim, Won-Ho
    • Analytical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.438-442
    • /
    • 2004
  • To determine the contents of $^{99}Tc$ in the spent PWR (pressurized water reactor) nuclear fuels by ICP-MS (inductively coupled plasma-mass spectrometry), a technetium separation method using an extraction chromatographic resin (TEVA Spec resin) has been established. $^{99}Tc$ was separated from a spent PWR nuclear fuel solution by this separation procedure and its concentration was determined by ICP-MS. The result agrees well with the value calculated by the program ORIGEN 2 and also the value measured by AG MP-1 resin/ICP-MS method described in our previous paper. It can be concluded that the present separation procedure is superior to the AG MP-1 resin procedure with respect to the time required for technetium separation as well as the efficiency of decontamination from other radioactive nuclides.

Nanometrology and its perspectives in environmental research

  • Kim, Hyun-A;Seo, Jung-Kwan;Kim, Taksoo;Lee, Byung-Tae
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.16.1-16.9
    • /
    • 2014
  • Objectives Rapid increase in engineered nanoparticles (ENPs) in many goods has raised significant concern about their environmental safety. Proper methodologies are therefore needed to conduct toxicity and exposure assessment of nanoparticles in the environment. This study reviews several analytical techniques for nanoparticles and summarizes their principles, advantages and disadvantages, reviews the state of the art, and offers the perspectives of nanometrology in relation to ENP studies. Methods Nanometrology is divided into five techniques with regard to the instrumental principle: microscopy, light scattering, spectroscopy, separation, and single particle inductively coupled plasma-mass spectrometry. Results Each analytical method has its own drawbacks, such as detection limit, ability to quantify or qualify ENPs, and matrix effects. More than two different analytical methods should be used to better characterize ENPs. Conclusions In characterizing ENPs, the researchers should understand the nanometrology and its demerits, as well as its merits, to properly interpret their experimental results. Challenges lie in the nanometrology and pretreatment of ENPs from various matrices; in the extraction without dissolution or aggregation, and concentration of ENPs to satisfy the instrumental detection limit.

Multi - elemental Analysis of Hair by Inductively Coupled Plasma/Mass Spectrometry (유도결합 플라스마 질량분석법에 의한 모발의 다원소 분석)

  • Cha, Myung Jin;Kang, Jun Mo;Park, Chang Joon
    • Analytical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.335-340
    • /
    • 2002
  • An analytical method has been developed to determine multi-elements in human hair samples by inductively coupled plasma mass spectrometry (ICP-MS). 0.05 g of hair sample was added to the Teflon digestion bomb together with 1.5 mL of nitric acid and an appropriate amount of In as an internal standard. The sample was then decomposed in the microwave digestion system. The hair certified reference material, GBW 09101, was analyzed for the validation of the analytical method. The determined values were in good agreement with the certified values within the uncertainty range.

Determination of Li by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry

  • Park, Chang J.;Chung, Bag S.
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.427-434
    • /
    • 1995
  • Inductively coupled plasma mass spectrometry combined with the isotope dilution method is used for the determination of lithium. The isotope dilution method is based on the addition of a known amount of enriched isotope (spike) to a sample. The analyte concentration is obtained by measuring the altered isotope ratio. The spike solution is calibrated through so called reverse isotope dilution with a primary standard. The spike calibration is an important step to minimize error in the determined concentration. It has been found essential to add spike to a sample and the primary standard so that the two isotope ratios should be as dose as possible. Since lithium is neither corrosive nor toxic, lithium is used as a chemical tracer in the nuclear power plants to measure feedwater flow rate. 99.9% $^7Li$ was injected into a feedwater line of an experimental system and sample were taken downstream to be spiked with 95% $^6Li$ for the isotope dilution measurements. Effects of uncertainties in the spike enrichment and isotope ratio measurement error at various spike-to-sample ratios are presented together with the flow rate measurement results in comparison with a vortex flow meter.

  • PDF

Determination of Total Arsenic in Drinking Water by Inductively Coupled Plasma-Mass Spectrometry (유도결합 플라스마 질량 분석법(ICP-MS)을 이용한 음용수 중의 전체 비소의 정량)

  • Lim, Yoo-Ree;Park, Kyung-Su;Yoon, Yang-Hee;Kim, Sun-Tae;Chung, Jin-Ho
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.423-427
    • /
    • 2000
  • Total arsenic in drinking water such as spring, small water-supply system and mineral water was determined by inductively coupled plasma mass spectrometry. The contents of total arsenic were analyzed after acidification by nitric acid to become 1% in water samples. According to the results, total concentration of arsenic in drinking water was below 30ppb.

  • PDF

Accurate Measurement of Isotope Amount Ratios of Lead in Bronze with Multicollector Inductively Coupled Plasma Mass Spectrometry

  • Lee, Kyoung-Seok;Kim, Jin-Il;Yim, Yong-Hyeon;Hwang, Euijin;Kim, Tae Kyu
    • Mass Spectrometry Letters
    • /
    • v.4 no.4
    • /
    • pp.87-90
    • /
    • 2013
  • Isotope amount ratios of lead in a bronze sample have been successfully determined using multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Matrix separation conditions were tested and optimized using ion exchange chromatography with anion-exchange resin, AG1-X8, and sequential elution of the 0.5 M HBr and 7 M $HNO_3$ to separate lead from very high contents of copper and tin in bronze matrix. Mercury was also removed efficiently in the optimized separation condition. The instrumental isotope fractionation of lead in the MC-ICP-MS measurement was corrected by the external standard sample bracketing method using an external standard, NIST SRM 981 lead common isotope ratio standard followed by correction of procedure blank to obtain reliable isotope ratios of lead. The isotope ratios, $^{206}Pb/^{204}Pb$, $^{207}Pb/^{204}Pb$, $^{208}Pb/^{204}Pb$, and $^{208}Pb/^{206}Pb$, of lead were determined as $18.0802{\pm}0.0114$, $15.5799{\pm}0.0099$, $38.0853{\pm}0.0241$, and $2.1065{\pm}0.0004$, respectively, and the determined isotope ratios showed good agreement with the reference values of an international comparison for the same sample within the stated uncertainties

Errors in Isotope Dilution Caused by Matrix-induced Mass Bias Effect in Quadrupole Inductively Coupled Plasma-Mass Spectrometry

  • Pak, Yong-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3482-3488
    • /
    • 2014
  • Matrix-induced mass bias and its effect on the accuracy of isotope ratio measurements have been examined for a quadrupole-based inductively coupled plasma-mass spectrometer (Q ICP-MS). Matrix-induced mass bias effect was directly proportional to % mass difference, and its magnitude varied for element and nebulizer flow rate. For a given element and conditions in a day, the effect was consistent. The isotope ratio of Cd106/Cd114 under $200{\mu}g\;g^{-1}$ U matrix deviated from the natural value significantly by 3.5%. When Cd 111 and Cd114 were used for the quantification of Cd with isotope dilution (ID) method, the average of differences between the calculated and measured concentrations was -0.034% for samples without matrix ($0.076{\mu}g\;g^{-1}$ to $0.21{\mu}g\;g^{-1}$ for the period of 6 months). However, the error was as large as 1.5% for samples with $200{\mu}g\;g^{-1}$ U. The error in ID caused by matrix could be larger when larger mass difference isotopes are used.

Development of a Mushroom Powder Certified Reference Material for Element Analysis

  • Betru, Tegegn Gizachew;Yim, Yong-Hyeon;Lee, Kyoung-Seok
    • Mass Spectrometry Letters
    • /
    • v.11 no.4
    • /
    • pp.108-112
    • /
    • 2020
  • A certified reference material (CRM) for the analysis of nutrient elements in an edible mushroom (Ganoderma lyceum) powder has been developed (KRISS CRM 108-10-011). The mass fractions of calcium (Ca), iron (Fe), and zinc (Zn) were measured by isotope dilution inductively coupled plasma mass spectrometry (ID ICP/MS). To dissolve the fungi cell wall of mushroom consisted of chitin fibers, sample preparation method by single reaction chamber type microwave-assisted acid digestion with acid mixtures was optimized. The mean measurement results obtained from 12 sample bottles were used to assign as the certified values for the CRM and the between-bottle homogeneities were evaluated from the relative standard deviations. The certified values were metrologically traceable to the definition of the kilogram in the International System of Units (SI). This CRM is expected to be used for validation of analytical methods or quality control of measurement results in analytical laboratories when they determine the mass fractions of elements in mushroom or other similar samples.

Determination of Isotopic Ratios for Ca in Inductively Coupled Plasma Mass Spectrometry (ICPMS) by Removing Water Related Molecules

  • 박용남;S. R. Koirtyohann
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1172-1175
    • /
    • 1997
  • Calcium isotopic ratios are precisely measured by removing isobaric interferences originated from water in the plasma. Liquid Ar cryogenic trap combined with membrane desolvator could eliminate backgrounds at m/z 42 and 44. Slow drift of ICP-MS is corrected by the frequent running of the standards. It is found necessary to separate Ca from the sample matrix using Ca oxalate precipitation technique. Currently, the RSD is 0.5-1.0% for 2 minutes of measurement but is expected to be improved if the measurement time is increased. The technique was applied to 42Ca enriched baby fecal samples and successfully determined 42Ca/44Ca ratio changes.