DOI QR코드

DOI QR Code

Errors in Isotope Dilution Caused by Matrix-induced Mass Bias Effect in Quadrupole Inductively Coupled Plasma-Mass Spectrometry

  • Pak, Yong-Nam (Department of Chemistry Education, Korea National University of Education)
  • Received : 2014.07.02
  • Accepted : 2014.08.08
  • Published : 2014.12.20

Abstract

Matrix-induced mass bias and its effect on the accuracy of isotope ratio measurements have been examined for a quadrupole-based inductively coupled plasma-mass spectrometer (Q ICP-MS). Matrix-induced mass bias effect was directly proportional to % mass difference, and its magnitude varied for element and nebulizer flow rate. For a given element and conditions in a day, the effect was consistent. The isotope ratio of Cd106/Cd114 under $200{\mu}g\;g^{-1}$ U matrix deviated from the natural value significantly by 3.5%. When Cd 111 and Cd114 were used for the quantification of Cd with isotope dilution (ID) method, the average of differences between the calculated and measured concentrations was -0.034% for samples without matrix ($0.076{\mu}g\;g^{-1}$ to $0.21{\mu}g\;g^{-1}$ for the period of 6 months). However, the error was as large as 1.5% for samples with $200{\mu}g\;g^{-1}$ U. The error in ID caused by matrix could be larger when larger mass difference isotopes are used.

Keywords

References

  1. Houk, R. S.; Fassel, V. A.; Flesh, G. D.; Svec, H. J.; Gray, A. L.; Taylor, C. E. Anal. Chem. 1980, 52, 2283-2290. https://doi.org/10.1021/ac50064a012
  2. Houk, R. S.; Fassel, V. A.; Svec, H. J. Dyn. Mass. Spectrom. 1981, 6, 234.
  3. Bievre, P. De Tech. Instrum. Anal. Chem. 1994, 15, 169-183. https://doi.org/10.1016/S0167-9244(08)70150-1
  4. Javis, K. E.; Grya, A. L.; Houk, R. S. Handbook of Inductively Coupled Plasma Mass Sepctrometry, Chapter 11, Blackie, NY, 1992.
  5. Hoefs, J. Stable Isotope Geochemistry; Springer: Berlin, 1987.
  6. Palesskii, S. V.; Nikolaeva, I. V.; Koz'menko, O. A.; Anoshin, G. N. J. of Anal. Chem. 2009, 64(3), 272-276. https://doi.org/10.1134/S1061934809030113
  7. Shima, M. Geochim. Cosmochim. Acta 1986, 50, 577-584. https://doi.org/10.1016/0016-7037(86)90106-7
  8. Bettmer, J. Analytical and Bioanalytical Chemistry 2010, 397(8), 3495-3502. https://doi.org/10.1007/s00216-010-3861-y
  9. Cavalheiro, J.; Preud'homme, H.; Amouroux, D.; Tessier, E.; Monperrus, M. Anal. & Bioanal. Chem. 2014, 406(4), 1253-1260. https://doi.org/10.1007/s00216-013-7373-4
  10. Atkinson, N. R.; Bailey, E. H.; Tye, M.; Breward, N.; Young, S. D. Environmental Chemistry 2011, 8(5), 493-500. https://doi.org/10.1071/EN11020
  11. Ross, B. S.; Hieftje, G. M. Spectrochim. Acta 1991, 46B, 1263-1275.
  12. Fontain, G. H.; Hattendorf, B.; Bourdon, B; Gunther, D. J. Anal. Atom. Spectrom. 2009, 24, 637-648. https://doi.org/10.1039/b816948a
  13. Martin, L. In ICP Mass Spectrometry Handbook, 1st ed.; Nelms, S., Ed.; Blackwell Publishing Ltd: Oxford, UK, 2005; ch. 1.
  14. Gilson, G. R.; Douglas, D. J.; Furford, J. E.; Halligan, K. W.; Tanners, S. D. Anal. Chem. 1988, 60, 1472-1479. https://doi.org/10.1021/ac00165a024
  15. Praphairaksit, N.; Houk, R. S. Anal. Chem. 2000, 72, 4435-4440. https://doi.org/10.1021/ac000590j
  16. Krupp, E. A.; Donard, O. F. X. Int. J. Mass Spectrom. 2005, 242, 233-241. https://doi.org/10.1016/j.ijms.2004.11.026
  17. Roudushkin, I. J. Anal. Atom. Spectrom. 1998, 13, 159-166. https://doi.org/10.1039/a706069f
  18. Heumann, K. G.; Gallus, S. M.; Radlinger, G.; Vogl, J. J. Anal. Atom. Spectrom. 1998, 13, 1001-1009. https://doi.org/10.1039/a801965g
  19. Agatemor, C; Beauchemin, D. Anal. Chim. Acta 2011, 706, 66-83. https://doi.org/10.1016/j.aca.2011.08.027
  20. Tan, A. H.; Horlich, G. J. Anal. Atom. Spectrom. 1987, 2, 745-754. https://doi.org/10.1039/ja9870200745
  21. Feng, L.; Wang, J.; Chao, J.; Lu, H. J. Anal. At. Spectrom. 2009, 24, 1676-1680. https://doi.org/10.1039/b908057k
  22. Crain, J. S.; Houk, R. S.; Smith, F. G. Spectrochim. Acta Part B 1988, 43B, 1355-1364.
  23. Tanner, S. D. J. Anal. Atom. Spectrom. 1995, 10, 905-911. https://doi.org/10.1039/ja9951000905
  24. Vanheacke, F.; Dams, R.; Vandecasteele, C. J. Anal. Atom. Spectrom. 1993, 8, 433-440. https://doi.org/10.1039/ja9930800433
  25. Sambuddha Misra; Philip N. Froelich J. Anal. At. Spectrom. 2009, 24, 1524-1533. https://doi.org/10.1039/b907122a
  26. Poirier, A.; Doucelance, R. Geostandards and Geoanal. Research 2009, 33(2), 195-204. https://doi.org/10.1111/j.1751-908X.2009.00017.x
  27. Hughes, H. J.; Delvigne, C.; Korntheuer, M.; De Jong, J.; Andre, L.; Cardinal, D. J. Anal. Atom. Spectrom. 2011, 26, 1892-1896. https://doi.org/10.1039/c1ja10110b
  28. Salit, M. L.; Turk, G. C. Anal. Chem. 1998, 70, 3184-3189. https://doi.org/10.1021/ac980095b
  29. Gregorie, D. C. Spectrochim. Acta 1987, 42B, 895-904.
  30. Douglas, D. J.; Kerr, L. A. J. Anal. At. Spectrom. 1988, 3, 749-752. https://doi.org/10.1039/ja9880300749
  31. Jarvis, K. E.; Gray, A. L.; Houk, R. S. Handbook of Inductively Coupled Plasma Mass Spectrometry; Chapter 2, Blackie, NY, 1992; p 36.
  32. Stuerup, S.; Bendahl, L.; Gammelgaard, B. J. Anal. At. Spectrom. 2006, 21, 297-304. https://doi.org/10.1039/b511741k

Cited by

  1. Correction of Errors Caused by Matrix-induced Mass Bias in Quadrupole Inductively Coupled Plasma-Mass Spectrometry Isotope Dilution Method vol.36, pp.11, 2015, https://doi.org/10.1002/bkcs.10562
  2. Atomic spectrometry update: review of advances in atomic spectrometry and related techniques vol.31, pp.5, 2016, https://doi.org/10.1039/C6JA90020H
  3. Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Imaging in Biology vol.121, pp.19, 2021, https://doi.org/10.1021/acs.chemrev.0c01219