• Title/Summary/Keyword: Inductive power transfer (IPT)

Search Result 52, Processing Time 0.022 seconds

Coil Design Scheme using Single-Turn FEM Simulation for Efficiency Optimization of Inductive Power Transfer System (단일 권선 FEM 시뮬레이션을 통한 자기유도형 무선전력전송 코일의 효율 최적화 설계)

  • Seung-Ha, Ryu;Chanh-Tin, Truong;Sung-Jin, Choi
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.471-480
    • /
    • 2022
  • Inductive power transfer (IPT) is an attractive power transmission solution that is already used in many applications. In the IPT system, optimal coil design is essential to achieve high power efficiency, but the effective design method is yet to be investigated. The inductance formula and finite element method (FEM) are popular means to link the coil geometric parameters and circuit parameters; however, the former lacks generality and accuracy, and the latter consumes much computation time. This study proposes a novel coil design method to achieve speed and generality without much loss of accuracy. By introducing one-turn permeance simulation in each FEM phase combined with curve fitting and optimization by MATLAB in the efficiency calculation phase, the iteration number of FEM can be considerably reduced, and the generality can be retained. The proposed method is verified through a 100 W IPT system experiment.

DQ Synchronous Reference Frame Model of a Series-Parallel Tuned Inductive Power Transfer System (직렬-병렬 공진 무선전력전송 시스템의 동기 좌표계 모델)

  • Noh, Eun-Chong;Lee, Sang-Min;Lee, Seung-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.477-483
    • /
    • 2020
  • This study proposes a DQ synchronous reference frame model of a series-parallel tuned inductive power transfer (SP-IPT) system. The wireless power transmission system experiences control difficulty because the transmitter-side controller cannot directly measure the receiver-side load voltages and currents. Therefore, a control-oriented circuit model that shows the dynamics of the IPT system is required to achieve a well-behaved controller. In this study, an equivalent circuit model of the SP-IPT system in a synchronously rotating reference frame is proposed using the single-phase DQ transformation technique. The proposed circuit model is helpful in modeling the dynamics of the voltages and currents of the transmitter- and receiver-side resonant tanks and loads. The proposed circuit model is evaluated using frequency- and time-domain simulation results.

Investigation of a SP/S Resonant Compensation Network Based IPT System with Optimized Circular Pads for Electric Vehicles

  • Ma, Chenglian;Ge, Shukun;Guo, Ying;Sun, Li;Liu, Chuang
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2359-2367
    • /
    • 2016
  • Inductive power transfer (IPT) systems have become increasingly popular in recharging electric vehicle (EV) batteries. This paper presents an investigation of a series parallel/series (SP/S) resonant compensation network based IPT system for EVs with further optimized circular pads (CPs). After the further optimization, the magnetic coupling coefficient and power transfer capacity of the CPs are significantly improved. In this system, based on a series compensation network on the secondary side, the constant output voltage, utilizing a simple yet effective control method (fixed-frequency control), is realized for the receiving terminal at a settled relative position under different load conditions. In addition, with a SP compensation network on the primary side, zero voltage switching (ZVS) of the inverter is universally achieved. Simulations and experiments have been implemented to validate the favorable applicability of the modified optimization of CPs and the proposed SP/S IPT system.

Analysis of Inductive Power Transfer System According to Layer Structure of Transceiver Coil (자기유도방식 무선전력전송 시스템 송수신 코일 Layer 구조에 따른 특성 분석)

  • Kim, Cheol-Min;Yoo, Jae-Gon;Kim, Jong-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.78-83
    • /
    • 2019
  • In this study, we analyze the structure of the transceiver coil in the inductive power transfer (IPT) system. In the IPT system, the transceiver coil design needs to have the highest magnetic coupling possible because of the relatively low magnetic coupling due to the large gap of distance without the core. The transmitting coil may be formed as a multi-layer type according to the distance between the transmitting and receiving coils if the receiving coil is configured as a multi-layer type on the inner structure of the receiving apparatus, thereby improving the magnetic coupling and system efficiency. We compare and analyze the coil magnetic coupling, and system efficiency according to the layer structure of the transmitting and receiving coils and verify the analysis by JMAG simulation. Experimental results show that the layer structure of the transceiver should be considered according to the inner space of the receiving device and the spacing distance.

Cascaded Multi-Level Inverter Based IPT Systems for High Power Applications

  • Li, Yong;Mai, Ruikun;Yang, Mingkai;He, Zhengyou
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1508-1516
    • /
    • 2015
  • A single phase H-bridge inverter is employed in conventional Inductive Power Transfer (IPT) systems as the primary side power supply. These systems may not be suitable for some high power applications, due to the constraints of the power electronic devices and the cost. A high-frequency cascaded multi-level inverter employed in IPT systems, which is suitable for high power applications, is presented in this paper. The Phase Shift Pulse Width Modulation (PS-PWM) method is proposed to realize power regulation and selective harmonic elimination. Explicit solutions against phase shift angle and pulse width are given according to the constraints of the selective harmonic elimination equation and the required voltage to avoid solving non-linear transcendental equations. The validity of the proposed control approach is verified by the experimental results obtained with a 2kW prototype system. This approach is expected to be useful for high power IPT applications, and the output power of each H-bridge unit is identical by the proposed approach.

Uncertainty Modeling and Robust Control for LCL Resonant Inductive Power Transfer System

  • Dai, Xin;Zou, Yang;Sun, Yue
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.814-828
    • /
    • 2013
  • The LCL resonant inductive power transfer (IPT) system is increasingly used because of its harmonic filtering capabilities, high efficiency at light load, and unity power factor feature. However, the modeling and controller design of this system become extremely difficult because of parameter uncertainty, high-order property, and switching nonlinear property. This paper proposes a frequency and load uncertainty modeling method for the LCL resonant IPT system. By using the linear fractional transformation method, we detach the uncertain part from the system model. A robust control structure with weighting functions is introduced, and a control method using structured singular values is used to enhance the system performance of perturbation rejection and reference tracking. Analysis of the controller performance is provided. The simulation and experimental results verify the robust control method and analysis results. The control method not only guarantees system stability but also improves performance under perturbation.

Secondary Side Output Voltage Stabilization of an IPT System by Tuning/Detuning through a Serial Tuned DC Voltage-controlled Variable Capacitor

  • Tian, Jianlong;Hu, Aiguo Patrick;Nguang, Sing Kiong
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.570-578
    • /
    • 2017
  • This paper proposes a method to stabilize the output voltage of the secondary side of an Inductive Power Transfer (IPT) system through tuning/detuning via a serial tuned DC Voltage-controlled Variable Capacitor (DVVC). The equivalent capacitance of the DVVC changes with the conduction period of a diode in the DVVC controlled by DC voltage. The output voltage of an IPT system can be made constant when this DVVC is used as a variable resonant capacitor combined with a PI controller generating DC control voltage according to the fluctuations of the output voltage. Since a passive diode instead of an active switch is used in the DVVC, there are no active switch driving problems such as a separate voltage source or gate drivers, which makes the DVVC especially advantageous when used at the secondary side of an IPT system. Moreover, since the equivalent capacitance of the DVVC can be controlled smoothly with a DC voltage and the passive diode generates less EMI than active switches, the DVVC has the potential to be used at much higher frequencies than traditional switch mode capacitors.

The analysis of IPT transformer by winding structures (권선구조에 따른 IPT transformer 해석)

  • Han, Kyung-Hee;Lee, Byung-Song;Kwon, Sam-Young;Park, Hyun-Jun;Baek, Soo-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.916-921
    • /
    • 2007
  • In this paper, the inductive power collector using electromagnetic induction for vehicle such as the electric railway vehicle system is suggested and some ideas for power collector design to improve the power transfer performance are presented. The inductive power of secondary part is related to amount of linked flux to secondary part by the length of air-gap, which is expected by such a system parameter as mutual inductance. This paper will study for the transfer characteristic of power from input to output and equation including mutual inductance. And also, effect of leakage inductance variation of inductive power collector according to structure of winding was considered.

  • PDF

Design of Two Stage Inductive Power Transfer System for Electric Vehicle Chargers (전기자동차 충전기용 2 stage IPT 시스템 설계)

  • Ann, Sangjoon;Kim, Minjung;Kim, Min-Kook;Lee, Byoung Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.112-113
    • /
    • 2017
  • 본 논문에서는 전기자동차용 배터리 충전기의 특징과 설계조건을 반영한 2 stage 자기유도방식 무선전력전송 (inductive power transfer, IPT) 시스템의 설계 방법을 제안한다. 시스템 설계 시 고려사항은 송신측 DC link 전압 범위와 수신측 듀티가변 범위, 배터리 전압 범위 등이 있다. 이와 같은 고려사항을 반영하여 2 stage IPT 시스템의 입 출력전압 범위를 선정하고 전압 전류 스트레스 분석을 통해 공진네트워크를 설계한다.

  • PDF

Analysis and Design of Semi-Bridgeless Rectifier in Inductive Power Transfer Systems for Electric Vehicles considering Reverse Recovery Phenomenon (역회복 현상을 고려한 전기자동차용 IPT 시스템의 Semi-Bridgeless 정류기 분석 및 설계)

  • Son, Won-Jin;Lee, Jae Han;Ann, Sangjoon;Byun, Jongeun;Lee, Byoung Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.74-76
    • /
    • 2018
  • 본 논문에서는 높은 주파수로 동작하는 전기자동차 충전용 자기유도방식 무선전력전송 (inductive power transfer, IPT) 시스템의 2차 측 semi-bridgeless 정류기 (semi-bridgeless rectifier, SBR)의 설계 방법을 제안한다. 높은 주파수 동작 시 SBR에 발생하는 발열 문제와 역회복 현상에 대해 분석하고, 분석 결과를 바탕으로 SBR용 스위치의 설계 요구 사항을 제안한다. 제안하는 요구 사항을 만족하는 SBR 스위치를 최종적으로 설계하고, 3.3kW급 IPT 시스템 prototype을 이용하여 설계 결과를 검증한다.

  • PDF