• Title/Summary/Keyword: Induction motors

Search Result 747, Processing Time 0.027 seconds

The Characteristic of Voltage Sags in Distribution System with Induction Motor Loads (유도전동기 부하를 고려한 배전계통의 전압저하(sag)특성)

  • Oh, Yong-Taek;Kim, Jin-Sung
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.69-73
    • /
    • 2006
  • The calculation of depth and duration of a sag is in both methods based on two simple assumptions. One is that due to the short circuit, the voltage drops to a low value immediately magnitude. Another is that when the fault is cleared. the voltage recovers immediately. These assumptions, however, do not hold in the case of a substantial part of the load consisting of electrical motors like in many industrial power systems. During the short circuit, the motors will slow down. Their reacceleration after the fault will increase the load current and thus prolong the voltage sag. This paper will discuss some of the aspects of the influence of induction motors on voltage sags.

  • PDF

Faults Diagnosis of Induction Motors by Neural Network (인공신경망을 이용한 유도전동기 고장진단)

  • Kim, Boo-Y.;Woo, Hyuk-J.;Song, Myung-H.;Park, Joong-J.;Kim, Kyung-M.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2175-2177
    • /
    • 2001
  • This paper presents a faults diagnosis technique of induction motors based on a neural network. Only stator current is measured, transformed by using FFT and normalized for the training. Healthy, bearing fault, stator fault and rotor end-ring fault motors are prepared to obtain the learning data and diagnose the several faults. For more effective diagnosis, the load rate is changed by 100%, 60%, 30% of full load and the obtained are applied to the learning process. The experimental results show the proposed method is very detectable and applicable to the real diagnosis system.

  • PDF

A Study on the Current-diagram Method for Calculating Induction Motor Characteristics with Adjustable Frequency (가변주파수에 있어서 유도전동기의 특성도식 산정법에 관해서 제1보)

  • Min-Ho Park
    • 전기의세계
    • /
    • v.17 no.3
    • /
    • pp.29-38
    • /
    • 1968
  • The development of the frequency converter using semiconductor enables to easily control the speed of A.C. motors. It is now technically possible and economically feasible to provide them with power at variable frequency, using silicon-controlled-rectifier (or thyristor) inverters. In such a case, if an induction motor is to be operated efficiently over a wide speed range, it must be supplied from a variable-frequency source whose frequency is adjustable over a range similar to that required for the motor speed. It is desired to observe how several characteristics are changed such as primary current, torque-speed, etc. Although the characteristics could be obtained by means of the conventional method, it requires very complicated calculation. It is assumed that the charateristics above are easily investigated by means of current diagram method from variable circuit constants relating to the motor which is designed in rated frequency. In this paper, the results of the study on the current-diagram method and its application are described as follows; (1) In order to discuss the construction of current diagram, the equation of the stator current with adjustable frequency was derived for applying the Current Diagram Method. (2) The radius, the center of the current circle and current vector locus at any desired frequency could be easily determined with the aid of both above mentioned equation and the standard current diagram at reference frequency. (3) This method could be applicable to the various types of Induction Motors, and this paper has dealt with its application to the capacitor, split-phase and 2-phase types of motors.

  • PDF

A Loss-Minimization Nonlinear Torque Control for Electrical Vehicle Induction Motors (전기자동차용 유도전동기의 에너지 손실을 최소화하는 비선형 토크 제어기 설계)

  • Jang, Jin-Su;Han, Byung-Jo;Hwang, Young-Ho;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1838-1839
    • /
    • 2006
  • In this paper, a loss-minimization nonlinear torque control for Electrical Vehicle(EV) induction motors is proposed. To improve the efficiency of the induction motors, it is important to find the optimal flux reference that minimize power losses. The proposed optimal flux reference is derived using a power loss function that is constructed with stator resistance losses, rotor resistance losses and core losses. And the time-varying load torque and the rotor resistance variation are considered in the power loss function. An algorithm that identifying the load torque is used. The rotor flux observer is used to obtain an accurate flux value regardless of the rotor resistance variation. Simulation results show a significant reduction in energy losses.

  • PDF

Faults Diagnosis of Induction Motors by Neural Network (인공신경망을 이용한 유도전동기 고장진단)

  • 김부열;우혁재;송명현;박중조;김경민;정회범
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.294-299
    • /
    • 2002
  • This paper presents a faults diagnosis technique of induction motors based on a neural network. Only stator current is measured, transformed by using FFT and normalized for the training. Healthy, bearing fault, stator fault and rotor end-ring fault motors are prepared to obtain the learning data and diagnose the several faults. For more effective diagnosis, the load rate is changed by 100%, 60%, 30% of full load and the obtained are applied to the teaming process. The experimental results show the proposed method is very detectable and applicable to the real diagnosis system.

Finite Control Set Model Predictive Control with Pulse Width Modulation for Torque Control of EV Induction Motors (전기자동차용 유도전동기를 위한 유한제어요소 모델예측 토크제어)

  • Park, Hyo-Sung;Koh, Byung-Kwon;Lee, Young-il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2189-2196
    • /
    • 2016
  • This paper proposes a new finite control set-model predictive control (FCS-MPC) method for induction motors. In the method, the reference state that satisfies the given torque and rotor flux requirements is derived. Cost indices for the FCS-MPC are defined using the state tracking error, and a linear matrix inequality is formulated to obtain a proper weighting matrix for the state tracking error. The on-line procedure of the proposed FCS-MPC comprises of two steps: select the output voltage vector of the two level inverter minimizing the cost index and compute the optimal modulation factor of the minimizing output voltage vector in order to reduce the state tracking error and torque ripple. The steady state tracking error is removed by using an integrator to adjust the reference state. The simulation and experimental results demonstrated that the proposed FCS-MPC shows good torque, rotor flux control performances at different rotating speeds.

An Improvement on low Speed Operation Performances of DTC for 3-level Inverter-fed Induction Motors (3레벨 인버터로 구동되는 유도전동기 직접토크제어의 저속성능 개선)

  • Lee, Kyo-Beum;Song, Joong-Ho;Choy, Ick;Kim, Kwang-Bae;Yoo, Ji-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.10
    • /
    • pp.693-700
    • /
    • 2000
  • A direct torque control algorithm for 3-level inverter-fed induction motors is presented. Conventional voltage selection methods provoke some problems such as stator flux drooping phenomenon and undersirable torque control appeared especially at the low speed operation. To overcome these problems, a proposed method uses intermediate voltage vectors, which are inherently generated in 3-level inverters. In the proposed algorithm, both subdivision of the basic switching sectors and applications of tntermediated voltages improve the low speed operation characteristics. This algorithm basically considers applications in which direct torque controlled induction motors are fed by 3-level inverters with low switching frequency around 500Hz. An adaptive observer is also employed to bring better responses at the low speed operation, by estimating some state-variables, motor speed and motor parameters which take a deep effect on the performance of the low speed operation. Simulation and experiment results verify effectiveness of the proposed algorithm.

  • PDF

An Innovative Solution for the Power Quality Problems in Induction Motor by Using Silica and Alumina Nano Fillers Mixed Enamel for the Coatings of the Windings

  • Mohanadasse, K.;Sharmeela, C.;Selvaraj, D. Edison
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1621-1625
    • /
    • 2015
  • Power quality has always been a concern of power engineers. Certainly an argument can be successfully made that most parts of power engineering have the ultimate objective to improve power quality. AC motors were widely used in industrial and domestic applications. Generally, AC motors were of two types: Induction and Synchronous motors. In motor many parameters like different load cycling, switching, working in hot weather and unbalances creates harmonics which creates major reasons for temperature rise of the motors. Due to high peak value of voltage, harmonics can weaken insulation in cables, windings and capacitors and different electronic components. Higher value of harmonics increase the motor current and decrease the power factor which will reduce the life time of the motor and increase the overall rating of all electrical equipments. Harmonics reduction of all the motors in India will save more power. Coating of windings of the motor with nano fillers will reduce the amount of harmonics in the motor. Based on the previous project works, actions were taken to use the enamel filled with various nano fillers for the coating of the windings of the different AC motors. Ball mill method was used to convert the micro particles of Al2O3, SiO2, TiO2, ZrO2 and ZnO into nano particles. SEM, TEM and XRD were used to augment the particle size of the powder. The synthesized nano powders were mixed with the enamel by using ultrasonic vibrator. Then the enamel mixed with the nano fillers was coated to the windings of the several AC motors. Harmonics were measured in terms of various indices like THD, VHD, CHD and DIN by using Harmonic analyzer. There are many other measures and indices to describe power quality, but none is applicable in all cases and in many instances, these indices may hide more than they show. Sometimes power quality indices were used as a basis of comparison and standardization. The efficiency of the motors was increased by 5 – 10 %. The thermal withstanding capacity of the motor was increased by 5º to 15º C. The harmonics of the motors were reduced by 10 – 50%.

Simulation of three-phase symmetrical squirrel cage induction motors with double rotor bars (대칭3상2중롱형유도전동기의 시뮬레이션)

  • 임달호;이은웅;장석명;구태만
    • 전기의세계
    • /
    • v.30 no.6
    • /
    • pp.366-374
    • /
    • 1981
  • In most cases, simulation of induction machines under dynamic conditions have been based on two-phase models using constant circuit parameters. Squirrel cage induction machines with double rotor bars which are made for high starting torgue have lower rotor bars of sufficient depth they cannot be accurately represented by a constant rotor resistance under all operating condition. In this paper, the circuit of three-phase symmetrical induction machines is represented in two-axis model by tensor. A method for simulating three-phase squirrel cage induction machines in a dynamic conditions is presented, and the current distribution in double rotor bars is calculated under dynamic conditions.

  • PDF

Modeling and Strategic Startup Scheme for Large-Scaled Induction Motors (대용량 유도기 기동 특성 모델링 및 전략적 기동 방법에 관한 연구)

  • Jung, Won-Wook;Shin, Dong-Yeol;Lee, Hak-Ju;Yoon, Gi-Gab
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.748-757
    • /
    • 2007
  • This paper is intended to solve the technical problem that fails in large-capacity induction motor starting due to serious voltage drop during starting period. One induction motor that is established already can reach in steady-state using reactor starting method but the voltage magnitude of PCC (point of common coupling) has dropped down a little. When the same capacity induction motor is installed additionally in the PCC, where the existing induction motor is operating, voltage drop becomes more serious by starting of additional induction motor. As a result, the additional induction motor fails in starting. Therefore, voltage compensation method is proposed so that all of two induction motors can be started completely. First, modeling technique is described in order to implement starting characteristics of large induction motor. And then, this paper proposes strategic starting scheme by proper voltage compensation that use no-load transformer tap control (NLTC) and step voltage regulator (SVR) for starting of two large induction motors successfully and improving the feeding network voltage profile during the starting period. The induction motor discussed in this paper is the pumped induction motor of 2500kVA capacity that is operating by KOWACO (Korea Water Resources Corporation). Modeling and simulation is conducted using PSCAD/EMTDC software.

  • PDF