• Title/Summary/Keyword: Induction motor fault

Search Result 196, Processing Time 0.028 seconds

Detection of Incipient Faults in Induction Motors using FIS, ANN and ANFIS Techniques

  • Ballal, Makarand S.;Suryawanshi, Hiralal M.;Mishra, Mahesh K.
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.181-191
    • /
    • 2008
  • The task performed by induction motors grows increasingly complex in modern industry and hence improvements are sought in the field of fault diagnosis. It is essential to diagnose faults at their very inception, as unscheduled machine down time can upset critical dead lines and cause heavy financial losses. Artificial intelligence (AI) techniques have proved their ability in detection of incipient faults in electrical machines. This paper presents an application of AI techniques for the detection of inter-turn insulation and bearing wear faults in single-phase induction motors. The single-phase induction motor is considered a proto type model to create inter-turn insulation and bearing wear faults. The experimental data for motor intake current, rotor speed, stator winding temperature, bearing temperature and noise of the motor under running condition was generated in the laboratory. The different types of fault detectors were developed based upon three different AI techniques. The input parameters for these detectors were varied from two to five sequentially. The comparisons were made and the best fault detector was determined.

Fault Diagnosis of Induction Motor using analysis of Stator Current (고정자 전류 분석을 이용한 유도전동기 고장진단)

  • Shin, Jung-Ho;Kang, Dae-Seong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.86-92
    • /
    • 2009
  • As increasing of using induction motors, the induction motors faults cause serious damage to the industry. Therefore to find out faults of induction motor is recognized as important problem awaiting solution. But to make matters worse, the faults of induction motors often progress through long time. It means that early diagnosis is very important. Many researches have been progressed and general method of diagnosis is using vibration sensor to diagnose fault of induction motor. However, although it is reliability technique, it demands high price and it is difficult to use. This paper presents an implementation of technique for fault diagnosis of induction motor using wavelet transform based stator current and it is composed with algorithm that decides whether fault existence or not using C++ based on windows software. The algorithm will be accomplished in real-time using current data acquisition board and PC automatically with Neural Network algorithm.

  • PDF

The Diagnosis for Induction Motor Bearing Faults Using Torque Signal Spectrum Analysis (토크신호 스펙트럼 분석을 이용한 유도전동기 베어링 고장진단)

  • Kim, Jun-Young;Yang, Chul-Oh;Park, Kyu-Nam;Song, Myung-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1850-1851
    • /
    • 2011
  • The faults of a electric motor cause to rise the maintenance and repair cost and to reduce the reliability of the electric power system. In this paper, the auto fault detection system for a induction motor is developed using the torque signal spectrum analysis. The spectrum of motor torque signal is used for finding a bearing fault feature frequency. A threshold value, for detecting the motor bearing fault is set by the difference of torque signal spectrum(FFT signal) between normal condition and faulted condition of the motor.

  • PDF

Study of an algorithm for intelligent digital protective relaying (지능형 디지탈 보호계전 알고리즘 연구)

  • 신현익;이성환;강신준;김정한;김상철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.343-346
    • /
    • 1996
  • A new method for on-line induction motor fault detection is presented in this paper. This system utilizes unsupervised-learning clustering algorithm, the Dignet, proposed by Thomopoulos etc., to learn the spectral characteristics of a good motor operating on-line. After a sufficient training period, the Dignet signals one-phase ground fault, or a potential failure condition when a new cluster is formed and persists for some time. Since a fault condition is found by comparison to a prior condition of the machine, on-line failure prediction is possible with this system without requiring information on the motor of load characteristics.

  • PDF

Analysis and Detection of Encoder Fault for Vector Controlled Inducton Motor Drives using Power Parity Relations (전력 등가관계를 이용한 벡터제어 유도전동기의 엔코더 고장 해석 및 검출)

  • 류지수;이기상;박태건
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.6
    • /
    • pp.333-341
    • /
    • 2003
  • In induction motor control systems driven by the indirect vector control scheme, the rotor speed is measured to determine the flux angle which is a key variable in the control algorithm. The most popular way to measure the angular velocity is the use of rotary encoder. Since the errorneous measurement of rotor speed results in incorrect flux angle estimate, the control input generated based on the faulty information should be far from the desired (correct) value and deteriorates the overall control performance. In this paper the effects of encoder fault on motor variables and control performance are analyzed by both theoretical approach and experimental study. A parity equation based on the Power is suggested and applied to detect the incipient fault of encoder.

Fault-Tolerant Control of Five-Phase Induction Motor Under Single-Phase Open

  • Kong, Wubin;Huang, Jin;Kang, Min;Li, Bingnan;Zhao, Lihang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.899-907
    • /
    • 2014
  • This paper deals with fault-tolerant control of five-phase induction motor (IM) drives under single-phase open. By exploiting a decoupled model for five-phase IM under fault, the indirect field-oriented control ensures that electromagnetic torque oscillations are reduced by particular magnitude ratio currents. The control techniques are developed by the third harmonic current injection, in order to improve electromagnetic torque density. Furthermore, Proportional Resonant (PR) regulator is adopted to realize excellent current tracking performance in the phase frame, compared with Proportional Integral (PI) and hysteresis regulators. The analysis and experimental results confirm the validity of fault-tolerant control under single-phase open.

A Fault-Tolerant Scheme for Direct Torque Controlled Induction Motor Drives (직접토크제어 유도전동기의 센서 이상허용 제어)

  • 류지수;이기상
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.366-376
    • /
    • 2002
  • A sensor fault detection and isolation scheme(SFDIS) is adopted to improve the reliability of direct torque controlled induction motor drives and the experimental results are discussed. Major contributions include: experimental analysis of a few important sensor faults. design and implementation of the proposed SFDIS, and the fault tolerant control system(FTCS). Although the adopted SFDIS employs only one observer for residual generation, the system has the function of fault isolation that only multiple observer schemes can have. To verify the performance of the proposed scheme, the speed control system is designed for the 2.2kW direct torque controlled Induction motor. Hardware of the control system consists of a control board using TMS320OVC33 and a power stack using IPM. Experimental results for various type of sensor faults show the effectiveness of the SFDIS and the FTCS.

Performance Evaluation of the Field-Oriented Control of Star-Connected 3-Phase Induction Motor Drives under Stator Winding Open-Circuit Faults

  • Jannati, Mohammad;Idris, Nik Rumzi Nik;Aziz, Mohd Junaidi Abdul
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.982-993
    • /
    • 2016
  • A method for the fault-tolerant vector control of star-connected 3-phase Induction Motor (IM) drive systems based on Field-Oriented Control (FOC) is proposed in this paper. This method enables the control of a 3-phase IM in the presence of an open-phase failure in one of its phases without the need for control structure changes to the conventional FOC algorithm. The proposed drive system significantly reduces the speed and torque pulsations caused by an open-phase fault in the stator windings. The performance of the proposed method was verified using MATLAB (M-File) simulation as well experimental tests on a 1.5kW 3-phase IM drive system. This paper experimentally compares the operation of the proposed fault-tolerant vector controller and a conventional vector controller during open-phase fault.

Fault-Tolerant Control for 5L-HNPC Inverter-Fed Induction Motor Drives with Finite Control Set Model Predictive Control Based on Hierarchical Optimization

  • Li, Chunjie;Wang, Guifeng;Li, Fei;Li, Hongmei;Xia, Zhenglong;Liu, Zhan
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.989-999
    • /
    • 2019
  • This paper proposes a fault-tolerant control strategy with finite control set model predictive control (FCS-MPC) based on hierarchical optimization for five-level H-bridge neutral-point-clamped (5L-HNPC) inverter-fed induction motor drives. Fault-tolerant operation is analyzed, and the fault-tolerant control algorithm is improved. Adopting FCS-MPC based on hierarchical optimization, where the voltage is used as the controlled objective, called model predictive voltage control (MPVC), the postfault controller is simplified as a two layer control. The first layer is the voltage jump limit, and the second layer is the voltage following control, which adopts the optimal control strategy to ensure the current following performance and uniqueness of the optimal solution. Finally, simulation and experimental results verify that 5L-HNPC inverter-fed induction motor drives have strong fault tolerant capability and that the FCS-MPVC based on hierarchical optimization is feasible.

Fault diagnosis system of induction motor using artificial neural network (인공신경망을 이용한 유도전동기고장진단)

  • Byun, Yeun-Sub;Wang, Jong-Bae;Kim, Jong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2222-2224
    • /
    • 2002
  • Induction motors are critical components of many industrial machines and are frequently integrated in commercial equipment. The heavy economical losses and the deterioration of system reliability might be caused by the failure of induction motors in industrial field. Based on the reliability and cost competitiveness of driving system (motors), the faults detection and diagnosis of system is considered very important factors. In order to perform the faults detection and diagnosis of motors, the vibration monitoring method and motor current signature analysis (MCSA) method are emphasized. In this paper, MCSA method are used for induction motor fault diagnosis. This method analyzes the motors supply current. since this diagnoses faults of the motor. The diagnostic algorithm is based on the artificial neural network, and the diagnosis system is programmed by using LabVIEW and MATLAB.

  • PDF