• 제목/요약/키워드: Induction Motors

검색결과 746건 처리시간 0.019초

k-NN과 SVM을 이용한 유도전동기 고장 분류 (Fault Classification of Induction Motors by k-NN and SVM)

  • 박성무;이대종;권석영;김용삼;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.109-112
    • /
    • 2006
  • 본 논문에서는 PCA에 의한 특징추출과 k-NN과 SVM에 기반을 계층구조의 분류기에 의한 유도전동기의 고장진단 알고리즘을 제안한다. 제안된 방법은 k-NN에 의해 선형적으로 분류 가능한 고장패턴을 분류한 후, 분류가 되지 않는 부분을 커널 함수에 의해 고차원 공간으로 입력패턴을 매핑한 후 SVM에 의해 고장을 진단하는 계층구조를 갖는다. 실험장치를 구축한 후, 다양한 부하에 대하여 몇몇의 전기적 고장과 기계적 고장 하에서 획득한 데이터를 이용하여 제안된 방법의 타당성을 검증한다.

  • PDF

Design of Self-Starting Hybrid Axial Flux Permanent Magnet Synchronous Motor Connected Directly to Line

  • Eker, Mustafa;Akar, Mehmet;Emeksiz, Cem;Dogan, Zafer;Fenercioglu, Ahmet
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1917-1926
    • /
    • 2018
  • In view of the current state of the reserves of electric energy generated resources and the share of electric motors in electricity consumption, many researches and studies related to efficiency in electric motors are being made. The presented work is related to the Axial Flux Permanent Magnet Synchronous Motor (AF-PMSM), which has recently undergone significant work based on the development of magnet and motor technology. In this study, a novel AF-PMSM was designed analytically through Finite Element Method (FEM) which can be started by connecting to a line such as an asynchronous motor in a transient state and can operate with high efficiency and power factor after synchronization in steady state without the need for an expensive motor drive. According to the obtained FEM results, a design with an efficiency class of IE4 of 5.5 kW shaft power, a 4 poles motor was obtained. As a result, economic calculations indicate that the extra cost of the designed Line start AF-PMSM with respect to the asynchronous motor is rapidly compensated by energy saving due to a more efficient operation, especially constant speed operations. As a result of the analysis obtained, the targeted values are reached. For induction motors and radial flux permanent magnet synchronous motors, a good alternative motor that can operate with high efficiency and power factor has been obtained.

유도전동기의 구속운전에 따른 전기 및 발열 특성 연구 (A Study on the Electrical and Heat Generation Characteristics of an Induction Motor under Restrained Operation)

  • 이종찬;김두현;김성철
    • 한국안전학회지
    • /
    • 제38권1호
    • /
    • pp.25-33
    • /
    • 2023
  • In this study, we determined the failure rate and fire status of electric motors widely used in domestic and industrial devices and analyzed the associated fire risks by identifying the electrical and temperature characteristics of electric motors under the normal and restrained operation modes in industrial sites and laboratories. A 2.2kW motor used for driving a conveyor during the vulcanization process in a rubber product manufacturing plant was employed as the study object and was exposed to a high- temperature environment as this motor is widely used in industrial sites. The current amplitude was 4.45-4.50 A during normal operation and 38.2-41.5 A during restrained operation due to the pinching of products and semi-finished products (i.e., 8.5 times higher than that during normal operation). The leakage current amplitude was 0.33 mA during both operation modes. The temperature of the workplace in summer was 42.38℃, indicating a poor environment for the installed motor. In the laboratory, the current and temperature of the coil inside a 3.7kW motor were measured under the restrained operation mode as performing measurements of the coil inside the motor in industrial sites is challenging. The current amplitude during normal operation was 3.5 A, whereas that during restrained operation for 30 s was 51.7-58.6 A, which is 14.8-16.7 times higher than that of normal operation. Moreover, the temperature of the motor coil increased from 22.9℃ to 101℃. Based on the experimental data, we derived the temperature increase formula according to the restrained operation time by performing a regression analysis and verified the time at which the temperature exceeded the stipulated limit for the insulation grade. The findings presented in this paper can be utilized to establish fire-prevention measures and perform safety management of motors of the same type or with a similar capacity.

다중 적응 퍼지제어기를 이용한 유도전동기 드라이브의 고성능 제어 (High Performance Control of Induction Motor Drive using Multi Adaptive Fuzzy Controller)

  • 고재섭;최정식;정동화
    • 조명전기설비학회논문지
    • /
    • 제23권10호
    • /
    • pp.59-68
    • /
    • 2009
  • 유도전동기의 벡터제어는 고성능 적용에서 광범위하게 사용되고 있다. 그러나 이러한 드라이브 성능은 파라미터 변동에 의한 동조는 여전히 한계가 있다. 다양한 속도영역에서 운전하기 위하여 종래에는 PI과 같은 제어기를 보통 사용하였다. 이러한 제어기들은 이상적인 벡터제어 조건에서 광범위한 운전에 대하여 제한된 양호한 성능을 나타낸다. 본 논문은 다중 적응 제어기를 사용하여 유도전동기 드라이브의 고성능 제어를 제시한다. 이 제어기는 FAM(Fuzzy Adaptation Mechanism)에 의 해 속도제어, MFC(Model Reference Adaptive Fuzzy Control)에 의해 전류제어 그리고 ANN을 이용하여 속도추정을 수행한다. 제시한 제어 알고리즘은 FAD MFC및 ANN 제어기를 사용하여 유도전동기 드라이브 시스템에 적용한다. 제시한 제어기의 성능은 유도전동기의 파라미터를 사용하여 다양한 동작조건에서 해석으로 평가한다. 또한, 본 논문은 제어기의 효용성을 입증하기 위하여 해석결과를 제시한다.

IGBT PWM 인버터 구동 유도전동기 고정자 권선에서의 과도전압 분포특성 (Distribution Characteristics of Irregular Voltage in Stator Windings of IGBT PWM Inverter-Fed Induction Motors)

  • 황돈하;김용주;이인우;배성우;김동희;노체균
    • 전력전자학회논문지
    • /
    • 제8권4호
    • /
    • pp.351-358
    • /
    • 2003
  • 본 논문에서는 IGBT PWM 인버터 구동 유도전동기 고정자 권선에서의 스위칭 써지전압 분포특성을 분석하였다. 고정자 권선의 턴 및 코일간의 전압분포를 해석하기 위하여 케이블을 포함한 유도전동기의 등가모델을 제안하고, 유한요소법을 이용하여 고주파 파라메타를 산출하였다 또한, 유도전동기, IGBT PWM 인버터 및 케이블등에 대한 전체 시스템의 EMTP 시뮬레이션을 통하여 인버터 상승시간, 케이블 길이 및 스위칭 주파수 등의 영향에 따른 전압분포를 분석하였다. 380[V], 50[HP] 유도전동기 고정자 권선을 대상으로 한 전압분포 특성실험을 통하여 인버터용 전동기 설치 및 과전압 억제용 필터 설계시의 유용한 자료를 제시하였다.

복합고장을 가지는 농형유도전동기의 모델링과 웨이블릿 분해를 이용한 고장진단 (Fault Modeling and Diagnosis using Wavelet Decomposition in Squirrel-Cage Induction Motor Under Mixed Fault Condition)

  • 김연태;배현;박진수;김성신
    • 한국지능시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.691-697
    • /
    • 2006
  • 유도전동기는 산업시스템에 있어서 필수적인 요소이기 때문에 유지 관리, 모니터링 시스템, 고장 진단 등의 다양한 분야에서 많은 연구가 행해지고 있다. 유도전동기의 운전 중 하나의 고장이 발생한 경우 이것은 전동기의 다른 부분에 영향을 미치거나 또 다른 고장을 유발시키는 원인이 된다. 따라서 개별적인 고장뿐만 아니라 결합된 형태의 고장을 검출하고 진단하는 것은 유용한 방법이다. 본 논문에서는 전압불평형 고장과 회전자바 고장이 발생한 경우, 흐리고 두 고장이 동시에 복합적으로 발생한 경우를 모델링하고 이에 대해 고장을 웨이블릿 분해를 이용하여 진단하였다. 제안된 고장 검출 및 진단 알고리즘은 농형유도전동기의 고정자 전류를 이용하였으며 매트랩 시뮬링크를 사용하여 시뮬레이션 하였다.

MRAS Based Speed Estimator for Sensorless Vector Control of a Linear Induction Motor with Improved Adaptation Mechanisms

  • Holakooie, Mohammad Hosein;Taheri, Asghar;Sharifian, Mohammad Bagher Bannae
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1274-1285
    • /
    • 2015
  • This paper deals with model reference adaptive system (MRAS) speed estimators based on a secondary flux for linear induction motors (LIMs). The operation of these estimators significantly depends on an adaptation mechanism. Fixed-gain PI controller is the most common adaptation mechanism that may fail to estimate the speed correctly in different conditions, such as variation in machine parameters and noisy environment. Two adaptation mechanisms are proposed to improve LIM drive system performance, particularly at very low speed. The first adaptation mechanism is based on fuzzy theory, and the second is obtained from an LIM mechanical model. Compared with a conventional PI controller, the proposed adaptation mechanisms have low sensitivity to both variations of machine parameters and noise. The optimum parameters of adaptation mechanisms are tuned using an offline method through chaotic optimization algorithm (COA) because no design criterion is given to provide these values. The efficiency of MRAS speed estimator is validated by both numerical simulation and real-time hardware-in-the-loop (HIL) implementations. Results indicate that the proposed adaptation mechanisms improve performance of MRAS speed estimator.

피쉬펌프의 자동화 시스템 개발(I) -간이화 PWM 인버터를 이용한 피쉬펌프의 가변속 제어- (Development of the Automation System for a fish Pump(I) -Adjustable Speed Control of a Fish Pump Using a Simplified PWM Inverter-)

  • 정석권
    • 수산해양기술연구
    • /
    • 제35권3호
    • /
    • pp.328-334
    • /
    • 1999
  • A fish pump makes very important roles in an automation system of an aquaculture farm, thus it has been used widely in order to transfer fishes from one place to the other place automatically. In spite of its significant roles, the efforts for developing performance and promoting efficiency of the fish pump are not sufficient yet. In this paper, a method which makes the fish pump automation system is suggested. Automation of the fish pump can be accomplished by using variable voltage and variable frequency inverter system including induction motors. Especially, very simple logic to generate Pulse width Modulation(PWM) wave to control induction motor efficiently and three steps speed control method to regulate liquid quantity of the fish pump simply are suggested. Owing to the simplifies speed control and PWM wave generation technique, a cheaper microprocessor, 80C196KC, than a digital signal Processor(DSP) can be used to operate control algorithm in induction motor systems for real time control Also, a new idea of remote control for the simplifies novel inverter system by Programmable logic Controller(PLC) without special output unit, digital to analog converter(D/A), is suggested in this paper. Consequently the function of reliability, availability and serviceability of the fish pump system are developed. It will be expected to contribute expanding of application of the fish pump in aquaculture farms because the system can reduce energy consumption and some difficulties according to manual operation prominently.

  • PDF

Extending Switching Frequency for Torque Ripple Reduction Utilizing a Constant Frequency Torque Controller in DTC of Induction Motors

  • Jidin, Auzani;Idris, Nik Rumzi Nik;Yatim, Abdul Halim Mohd;Sutikno, Tole;Elbuluk, Malik E.
    • Journal of Power Electronics
    • /
    • 제11권2호
    • /
    • pp.148-155
    • /
    • 2011
  • Direct torque control(DTC) of induction machines is known to offer fast instantaneous torque and flux control with a simple control structure. However, this scheme has two major disadvantageous, namely, a variable inverter switching frequency and a high torque ripple. These problems occur due to the use of hysteresis comparators in conventional DTC schemes, particularly in controlling the output torque. This paper reviews the utilization of constant frequency torque controllers (CFTC) in DTC to solve these problems while retaining the simple control structure of DTC. Some extensions of the work in utilizing a CFTC will be carried out in this paper which can further reduce the torque ripple. This is particularly useful for a system which has a limited/low sampling frequency. The feasibility of a CFTC with an extended carrier frequency in minimizing the torque ripple is verified through experimental results.

Intelligent Diagnosis of Broken Bars in Induction Motors Based on New Features in Vibration Spectrum

  • Sadoughi, Alireza;Ebrahimi, Mohammad;Moallem, Mehdi;Sadri, Saeid
    • Journal of Power Electronics
    • /
    • 제8권3호
    • /
    • pp.228-238
    • /
    • 2008
  • Many induction motor broken bar diagnosis methods are based on evaluating special components in machine signals spectrums. Current, power, flux, etc are among these signals. Frequencies related to a broken rotor fault are slip dependent, therefore, correct diagnosis of fault - especially when obtrusive frequency components are present - depends on accurate determination of motor velocity and slip. The traditional methods typically require several sensors that should be pre-installed in some cases. This paper presents a diagnosis method based on only a vibration sensor. Motor velocity oscillation due to a broken rotor causes frequency components at twice slip frequency difference around speed frequency in vibration spectrum. Speed frequency and its harmonics as well as twice supply frequency, can easily and accurately be found in a vibration spectrum, therefore th motor slip can be computed. Now components related to rotor fault can be found. It is shown that a trained neural network - as a substitute for an expert person - can easily categorize the existence and the severity of a fault according to the features extracted from the presented method. This method requires no information about th motor internal and has been able to diagnose correctly in all the laboratory tests.