• Title/Summary/Keyword: Induction Motors

Search Result 746, Processing Time 0.021 seconds

A Study on the Parameters and Characteristics of Induction Motor driven by Inverter (인버터로 구동되는 유도전동기의 정수 및 특성에 관한 연구)

  • Jeon, Nae-Suck;Kim, Jong-Yun;Park, Chan-Kun;Eum, Sang-O;Lee, Sung-Geun;Kim, Yoon-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1111-1113
    • /
    • 2000
  • This paper presents the calculation method for the equivalent-circuit parameters and torque characteristics of squirrel-cage induction motors. The measurement of motor parameters were calculated by the stator resistance test, the blocked rotor test and no load test to T type equivalent-circuit. Especially, this paper describes the test results obtained by using hall sensor and strain gauge for the current and torque characteristics of induction motors. Three-phase squirrel-cage induction motor which has 1[hp] was used to the test and the parameters obtained by the test were compared with the maker parameters.

  • PDF

Calculation of Iron Losses in Inverter-fed Induction Motors based on Time-stepping FEM

  • Wang, Hai-Rong;Wu, Jian-Hua
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.283-287
    • /
    • 2013
  • This paper presents a method for calculating iron losses in three-phase induction motors under the inverter supply through the field-circuit coupled time-stepping finite element method (FEM). Iron losses are calculated by using the three-term iron losses separated model and modifying the loss coefficients obtained by the iron losses curves which are provided by the manufacturer under the sinusoidal supply. Simulation results by the presented method are verified by the measured results with an error lower than 5%, confirming the validity of the proposed method. Finally, iron losses distribution of the inverter-fed three-phase induction prototype motor is shown.

Design of an Adaptive Backstepping Speed Controller for Induction Motors with Uncertainties using Neural Networks (신경회로망을 이용한 불확실성을 갖는 유도전동기의 적응 백스테핑 속도제어기 설계)

  • Lee, Eun-Wook;Chung, Kee-Chull;Lee, Seung-Hak
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.11
    • /
    • pp.476-482
    • /
    • 2006
  • Based on a field-oriented model of induction motor, an adaptive backstepping control approach using neural networks is proposed in this paper for the speed control of induction motors with uncertainties at a minimum of information. Neural networks are used to approximate most of uncertainties which are derived from unknown motor parameters, load torque disturbances and unknown nonlinearities and an adaptive backstepping controller is used to derive adaptive law of neural networks and control input directly. The controller is implemented by the hardware using DSP and the effectiveness of the proposed approach is verified by carrying out the experiment.

Investigation of the Impact of Voltage Sags on 3-Phase Induction Motors (순간전압강하가 3상 유도전동기에 미치는 영향 검토)

  • Kang, Bong-Seok;Kim, Jae-Chul;Moon, Jong-Fil;Yun, Sang-Yun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.361-365
    • /
    • 2004
  • This paper describes the various characteristics of voltage sags which can affect the functions of three-phase induction motors that are mostly used in the power distribution systems. These assorted characteristics include motor speed losses, voltage recovery, motor reacceleration, and transient characteristics. An experimental study on the induction motor behaviors was also carried out to confirm these impacts. In addition sequential voltage sags with short durations were considered and investigated. The results show that the occurrence of the second voltage sag after the first one may affects the induction motor adversely.

  • PDF

Performance of the Squirrel Cage Induction Motor with High Temperature Superconducting Rotor Bars at Stable Operating Region (고온초전도단락봉을 사용한 농형유도전동기의 안정영역 특성)

  • 심정욱;차귀수;이지광
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.9
    • /
    • pp.442-447
    • /
    • 2003
  • Motors with HTS wires or bulks have been developing recently. Those are large synchronous motor with HTS wires at the field winding in the rotor, hysteresis and reluctance motors with HTS bulk in the rotor. This paper presents the fabrication and test results of an HTS induction motor. Conventional end rings and short bars were replaced with HTS wires in the motor. Stator of the conventional induction motor was used as the stator of the HTS motor. Rated capacity and rpm at full rotor of the conventional motor were 0.75[kW] and 1,710[rpm]. Two, HTS wires are used in parallel to make the end rings and bars. The critical current of the BSCCO-2223 HTS wire which was used in the bars and end rings were 115[A]. Electrodynamometer was coupled directly to the shaft of the rotor with HTS wires.

Investigation of the Impact of Voltage Sags and Temporary Interruptions on 3-Phase Induction Motors (배전계통 순간전압강하 및 순간정전이 3상 유도전동기에 미치는 영향 검토)

  • Kang, Bong-Seok;Kim, Jae-Chul;Moon, Jong-Fil;Yun, Sang-Yun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.106-109
    • /
    • 2003
  • This paper describes the various characteristics of voltage sags and temporary interruptions which can affect the functions of 3-phase induction motors. These assorted characteristics include motor speed loss, voltage recovery, motor reacceleration, and transient characteristics. An experimental study on induction motor behavior was also carried out to confirm these impacts. Besides, sequential voltage sags of short duration were considered for this paper. The results show that the occurrence of the second voltage sag after the first one may affects the induction motor adversely.

  • PDF

A Method for Indentifying Broken Rotor Bar and Stator Winding Fault in a Low-voltage Squirrel-cage Induction Motor Using Radial Flux Sensor

  • Youn, Young-Woo;Hwang, Don-Ha;Sun, Jong-Ho;Kang, Dong-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.666-670
    • /
    • 2011
  • In this paper, a method for detecting broken rotor bar and stator winding fault in a low voltage squirrel-case induction motor using an air-gap flux variation analysis is proposed to develop a simple and low cost diagnosis technique. To measure the leakage flux in radial direction, a radial flux sensor is designed as a search coil and installed between stator slots. The proposed method is able to identify two kinds of motor faults by calculating load condition of motors and monitoring abnormal signals those are related with motor faults. Experimental results obtained on 7.5kW three-phase squirrel-cage induction motors are discussed to verify the performance of the proposed method.

Sensorless Vector Control of Induction Motors for Wind Energy Applications Using MRAS and ASO

  • Jeong, Il-Woo;Choi, Won-Shik;Park, Ki-Hyeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.873-881
    • /
    • 2014
  • Speed sensorless modes of operation are becoming standard solution in the area of electric drives. This paper presents flux estimator and speed estimator for the speed sensorless vector control of induction motors. The proposed sensorless methods are based on the model reference adaptive system (MRAS) observer and adaptive speed observer (ASO). The proposed speed estimation algorithm can be employed in the power control of grid connected induction generator for wind power applications. Two proposed schemes are verified through computer simulation PSIM and compared their simulation results.

Fault Detection and Classification of Faulty Induction Motors using Z-index and Frequency Analysis (Z-index와 주파수 분석을 이용한 유도전동기 고장진단과 분류)

  • Lee, Sang-Hyuk
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.64-70
    • /
    • 2005
  • In this literature, fault detection and classification of faulty induction motors are carried out through Z-index and frequency analysis. Above frequency analysis refer Fourier transformation and Wavelet transformation. Z-index is defined as the similar form of energy function, also the faulty and healthy conditions are classified through Z-index. For the detection and classification feature extraction for the fault detection of an induction motor is carried out using the information from stator current. Fourier and Wavelet transforms are applied to detect the characteristics under the healthy and various faulty conditions. We can obtain feature vectors from two transformations, and the results illustrate that the feature vectors are complementary each other.

A Design of Load Shedding System Considering both Angular Stability and Voltage Stability in Industrial Power System (산업용 전력계통의 주파수 안정도와 전압 안정도를 고려한 부하차단 설계)

  • Kim, Bong-Hee
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.3
    • /
    • pp.103-109
    • /
    • 2004
  • This paper has presented, taking an example of a gas separation plant, dynamic analysis on frequency decline caused by the over-loading at the generator and the knee point causing voltage instability due to reactive power required by re-acceleration of large induction motors, resulting in phenomena of failure in the conventional frequency load shedding. In order to resolve the voltage instability problem, a design of load shedding system employing under-voltage relays has been proposed to the industrial power system containing large induction motors in addition to the conventional load shedding employing frequency relays. For the purpose of dynamic analysis, models of gas turbine and governor, synchronous generator, brushless exciter, and induction motor are introduced.