• Title/Summary/Keyword: Induction Motor Drive, Fuzzy Control

Search Result 93, Processing Time 0.028 seconds

Torque Ripple Reduction in Direct Torque Control of Five-Phase Induction Motor Using Fuzzy Controller with Optimized Voltage Vector Selection Strategy

  • Shin, Hye Ung;Kang, Seong Yun;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1177-1186
    • /
    • 2017
  • This paper presents a torque ripple reduction method of direct torque control (DTC) using fuzzy controller with optimal selection strategy of voltage vectors in a five-phase induction motor. The conventional DTC method has some drawbacks. First, switching frequency changes according to the hysteresis bands and motor's speed. Second, the torque ripple is rapidly increased in long control period. In order to solve these problems, some/most papers have proposed torque ripple reduction methods by using the optimal duty ratio of the non-zero voltage vector. However, these methods are complicated in accordance with the parameter. If this drawback is eliminated, the torque ripple can be reduced compared with conventional method. In addition, the DTC can be simply controlled without the use of the parameter. Therefore, the proposed algorithm is changing the voltage vector insertion time by using the designed fuzzy controller. Also, the optimized voltage vector selection method is used in accordance with the torque error. Simulation and experimental results show effectiveness of the proposed control algorithm.

Estimation and Control of Speed of Induction Motor using FNN and ANN (FNN과 ANN을 이용한 유도전동기의 속도 제어 및 추정)

  • Lee Jung-Chul;Park Gi-Tae;Chung Dong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.6
    • /
    • pp.77-82
    • /
    • 2005
  • This paper is proposed fuzzy neural network(FNN) and artificial neural network(ANN) based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed control and estimation of speed of induction motor using fuzzy and neural network. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the experimental results to verify the effectiveness of the new method.

Estimation and Control of Speed of Induction Motor using Fuzzy and Neural Network (퍼지와 신경회로망을 이용한 유도전동기의 속도 추정 및 제어)

  • Choi, Jung-Sik;Lee, Jung-Chul;Lee, Hong-Gyun;Nam, Su-Myeong;Ko, Jae-Sub;Kim, Jong-Hwan;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.152-154
    • /
    • 2005
  • This paper is proposed a fuzzy control and neural network based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability Also, this paper is proposed estimation and control of speed of Induction motor using fuzzy and neural network. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. This paper is proposed the experimental results to verify the effectiveness of the new method.

  • PDF

Time Constant Estimation of Induction Motor rotor using MRAS Fuzzy Control (MRAS 퍼지제어를 이용한 유도전동기 회전자의 시정수 추정)

  • Lee Jung-Chul;Lee Hong-Gyun;Chung Dong-Hwa;Cha Young-Doo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.155-161
    • /
    • 2005
  • This paper presents time a constant estimation of induction motor using MRAS(model reference adaptive system) fuzzy control. The rotor time constant is enabled from the estimation of rotor flux, which has two methods. One is to estimate it based on the stator current and the other is to integrate motor terminal voltage. If the parameters are correct, these two methods must yield the same results. But, for the case where the rotor time constant is over or under estimated, the two rotor nut estimation have different angles. Furthermore their angular positions are related to the polarity of rotor time constant estimation error. Based on these observation, this paper develops a rotor time constant update algorithm using fuzzy control. This paper shows the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

Genetically Optimized Induction Moter Control with Pseudo-on-line Method (유전자 알고리즘으로 최적화된 Pseudo-on-line 방법을 이용한 하이브리드 유도전동기 제어)

  • Jang, Kyung-Won;Kang, Jin-Hyun;Ahn, Tae-Chon;Peters, James F.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2176-2179
    • /
    • 2002
  • This paper introduces a hybrid induction motor control using a genetically optimized pseudo-on-line method. Optimization results from the use of a look-up table based on genetic algorithms to find the global optimum of a un-constraint optimization problem. The approach to induction motor control includes a pseudo-on-line procedure that optimally estimates parameters of a fuzzy PID (FPID) controller. The proposed hybrid genetic fuzzy PID (GFPID) controller is applied to speed control of a 3-phase induction motor and its computer simulation is carried out. Simulation results show that the proposed controller is performs better than conventional FPID and PID controllers. The contribution of this paper is the introduction of a high performance hybrid form of induction motor control that makes on-line and real-time control of the drive system possible.

  • PDF

Speed control of induction motor using Fuzzy PI controller (퍼지 PI 제어기를 이용한 유도전동기 속도제어)

  • 조정민;함년근;이상집;이승환;이훈구;김용주;한경희
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.230-233
    • /
    • 1998
  • The conventional PI controller are fragile in parameter variation and load-variation. Therefore, in this paper, a speed control algorithm based on the Fuzzy PI controller is proposed for the high performance speed control of a voltage-source inverter to drive 3-phase induction motors. The computer simulation results show that the proposed controller are more excellent control characteristics than conventional PI controller in transient-state and steady-state response.

  • PDF

Robust Fuzzy Logic Current and Speed Controllers for Field-Oriented Induction Motor Drive

  • El-Sousy, Fayez F.M.;Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.115-123
    • /
    • 2003
  • This paper presents analysis, design and simulation for the indirect field orientation control (IFOC) of induction machine drive system. The dynamic performance of the IFOC under nominal and detuned parameters of the induction machine is established. A conventional proportional plus integral-derivative (PI-D) two-degree-of-freedom controller (2DOFC) is designed and analysed for an ideal IFOC induction machine drive at nominal parameters with the desired dynamic response. Varying the induction machine parameters causes a degredation in the dynamic response for disturbance rejection and tracking performance with PI-D 2DOF speed controller. Therefore, conventional controllers can nut meet a wide range of speed tracking performance under parameter variations. To achieve high- dynamic performance, a proposed robust fuzzy logic controllers (RFLC) for d-axis rotor flux, d-q axis stator currents and rotor speed have been designed and analysed. These controllers provide robust tracking and disturbance rejection performance when detuning occurres and improve the dynamic behavior. The proposed REL controllers provide a fast and accurate dynamic response in tracking and disturbance rejection characteristics under parameter variations. Computer simulation results demonstrate the effectiveness of the proposed REL controllers and a robust performance is obtained fur IFOC induction machine drive system.

Sensorless Control of Induction Motor using Adaptive FNN Controller (적응 FNN에 의한 유도전동기의 센서리스 제어)

  • Lee, Young-Sil;Lee, Jung-Chul;Lee, Hong-Gyun;Nam, Su-Myeong;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.179-181
    • /
    • 2004
  • This paper is proposed an adaptive fuzzy-neural network(A-FNN) controller based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed estimation of induction motor using A closed-loop state observer. The rotor position is calculated through the stator flux position and an estimated flux value of rotation reference frame. A closed-loop state observer is implemented to compute the speed feedback signal. The results of analysis prove that the proposed control system has strong robustness to rotor parameter variation, and has good steady-state accuracy and transitory response.

  • PDF

SIMULTANEOUS SPEED AND ROTOR TIME CONSTANT IDENTIFICATION OF AN INDUCTION MOTOR DRIVE BASED ON THE MODEL REFERENCE ADAPTIVE SYSTEM COMBINED WITH A FUZZY RESISTANCE ESTIMATOR

  • Soltani, Jafar;Mizaeian, Behzad
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.11-16
    • /
    • 1998
  • In this paper, simultaneous estimation of rotor speed and time constant for a voltage source inverter (VSI) fed induction motor drive are disccussed. The theory is based on the Model Reference Adaptive System (MRAS). The identifier executes Simultaneous rotor speed and time constant so that vector control of the induction may be achieved in the rotor-flux oriented reference frame. Furthermore, to eliminate the offset error caused by the change in the stator resistance, a fuzzy resistance regulator is also designed which operates in parallel with the rotor speed and time constant identifier

  • PDF

A Study on Speed Control of Induction Motor using the Fuzzy Modifier (퍼지보상기를 이용한 유도전동기의 속도제어에 관한 연구)

  • Kim, Yuen-Chung;Lee, Sang-Suk;Won, Chung-Yuen;Kim, Young-Real
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2012-2014
    • /
    • 1998
  • The conventional PI controller has been widely used in industrial applications. If a PI control gain is selected suitable, the PI controller shows very good control performance. But it is very difficult to find the optimal PI control gain. Therefore, in this paper, the 4-rule based fuzzy logic modifier of the conventional PI controller are presented. The fuzzy logic modifier which exhibits a stabilizing effects on the closed-loop system, has good robustness regarding the improperly tuned PI controller. The simulation are performed to verify the capability of proposed control method on vector controlled induction motor drive system.

  • PDF