• Title/Summary/Keyword: Induction Heating Process

Search Result 173, Processing Time 0.02 seconds

Validation of applicability of induction bending process to P91 piping of prototype Gen-IV sodium-cooled fast reactor (PGSFR)

  • Tae-Won Na;Nak-Hyun Kim;Chang-Gyu Park;Jong-Bum Kim;Il-Kwon Oh
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3571-3580
    • /
    • 2023
  • The application of the induction bending process to pipe systems in various industrial fields is increasing. Recently, efforts have also been made to apply this bending process to nuclear power plants because it can innovatively reduce welded parts of the curved pipes, such as elbows. However, there have been no cases of the application of induction bending to the piping of nuclear power plants. In this study, the applicability of the P91 induction bending piping for the sodium-cooled fast reactor PGSFR was validated through high temperature low cycle fatigue tests and creep tests using P91 induction bending pipe specimens. The tests confirmed that the materials sufficiently satisfied the fatigue life and the creep rupture life requirements for P91 steel at 550 ℃ in the ASME B&PV Code, Sec. III, Div. 5. The results show that the effects of heating and bending by the induction bending process on the material properties were not significant and the induction bending process could be applicable to piping system of PGSFR well.

Study on Optimization of Temperature Jump-Bending Process for Reducing Thickness Attenuation of Large-Diameter Steel Pipe (대구경 곡관 두께감소율 제어를 위한 온도점프 벤딩 공정의 최적화에 관한 연구)

  • Xu, Zhe-Zhu;Kim, Lae-Sung;Jeon, Jeong-Hwan;Liang, Long-Jun;Choi, Hyo-Gyu;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.21-27
    • /
    • 2015
  • Induction bending is a method that allows the bending of any material that conducts electricity. This technology applies a bending force to a material that has been locally heated by an eddy current induced by a fluctuating electromagnetic field. Induction bending uses an inductor to locally heat steel through induction. This results in a narrow heat band in the shape to be bent. In general, the reduction of thickness attenuation of a large-diameter steel pipe is not allowed to exceed 12.5%. In this paper, in order to meet the standard of thickness attenuation reduction, a non-uniform heating temperature jump-bending process was investigated. As a result, the developed bending technique meets the requirements of thickness attenuation reduction for large-diameter steel pipes.

Horizontal Reheating of Aluminium Alloys for Thixoforming (Thixoforming을 위한 연주 Billet의 수평형 재가열)

  • Park S. M.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.120-123
    • /
    • 2001
  • The semi-solid casting will have a higher internal integrity, mechanical properties and dimensional accuracy than the conventional castings. This process can reduce the manufacturing costs and finished weight for critical components. The semi-solid casting are capable of greater dimensional repeatbility, this supplies considerable savings when extensive machining, salvage and scrap are key variables in the current automotive product. One of the most important factor regarding the semi-solid die casting process are the reheating method of the raw materials to the semi-solid state. Therefore, in this present work, the horizontal type induction heating system to obtain the optimal reheating conditions suitable for semi-solid die casting process was designed and manufactured. And the microstructure of reheated materials was investigated.

  • PDF

Fabrication of a Part by Heating and Forming in the Semi-solid State of the SKH51 Material (SKH51의 반응고 상태에서의 가열 및 성형에 의한 부품 제조)

  • Lee, Sang Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.3
    • /
    • pp.127-132
    • /
    • 2014
  • The semi-solid metal forming process has been applied to realize a near-net shape fabrication of a high speed tool steel. A complicatedly shaped part out of SKH51 was successfully manufactured by introducing pertinent materials, tooling and processing conditions. A SKH51 billet with globular grains was heated at temperatures between 1300 and $1350^{\circ}C$ using high frequency induction heater to get semi-solid microstructure before high rate injection of mushy metal into a die cavity for the forming process. It was necessary to control the preheating of dies between 300 and $400^{\circ}C$ to maintain the homogeneous microstructure during the semi-solid metal forming process. Significant defects such as pores, high fraction of liquid fraction and segregation could be removed from the part by using air vents.

Reheating Process and FEM Analysis of Inductive Heating (재가열 공정과 유도 가열의 FEM 해석)

  • 손영익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.195-198
    • /
    • 1999
  • For the thixoforming process beside an existing solidus-liquidus interval, the reheating conditions to obtain the globular microstructure are very important. It relies on the control of globular microstructure of semi-solid alloys that contain non-dendritic particles. To obtain the globular microstructure in cross section of billet, the optimal design of the induction coil is necessary. Therefore, in this paper the optimal coil design to minimize electromagnetic end effect will be proposed. The results of coil design were also applied to the reheating process to obtain a fine globular microstructure. Finally, reheating data base of aluminum alloys for thixoforming and FEM model for induction heating based on the optimal coil design have been proposed.

  • PDF

The Effect of globule size on the Mechanical Properties in Reheating Process of Aluminium Alloys (알루미늄소재의 재가열 공정에서 구상화의 크기가 기계적 성질에 미치는 영향)

  • 박상문;강충길
    • Transactions of Materials Processing
    • /
    • v.11 no.2
    • /
    • pp.155-164
    • /
    • 2002
  • One of the important steps on semi-solid forming Is the reheating process of raw materials to the semi-solid state. This Process is not only necessary to achieve the required SSM billet state, but also to contro1 the microstructure of the billet. In reheating process, the globule size is determined by the holding time of last heating stage. Therefore, some experiments to investigate the relationship between the mechanical properties and the holding time in the last heating stage was performed. The alloys used in this experiment were 357, 319 and A390 alloys. The experiments of reheating were performed by using an Induction heating system with the capacity of 50kw. This paper shows the evolution of the microstructure according to the holding time of last reheating stage. Furthermore, to evaluate the effect of globule size controlled by holding time in last heating stage uniaxial tension test was performed. The strain-stress curves were plotted according to the holding time.

Numerical Simulation of Induction Hardening Process of Tubular Drive Shaft for Automobile (자동차용 중공 구동축의 고주파 경화 공정에 대한 수치적 연구)

  • Kang, G.P.;Oh, B.K.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.25 no.4
    • /
    • pp.248-253
    • /
    • 2016
  • Induction hardening process of tubular drive shaft for automobile is simulated by combining the thermal, mechanical, electro-magnetic and metallurgical analysis models. Various material properties for each analysis model are obtained in a consistent way via material properties calculation software, JMatPro®. To consider the scanning process of induction heating, boundary element method is adopted for electro-magnetic field calculation. The distribution of temperature, stress and phase volume fraction are tracked out through the whole process and the effect of scanning velocity is reviewed. The analysis result shows that the critical principal stress is developed at the phase boundary where martensite is formed.

Effect of Process Parameters of P/M and Induction Heating on the Cell Morphology and Mechanical Properties of 6061 Aluminum Alloy (P/M법과 유도가열 공정변수가 6061 알루미늄 합금의 미세기공과 기계적 성질에 미치는 영향)

  • 강충길;윤성원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.222-229
    • /
    • 2003
  • The purpose of this study is to evaluate the mechanical properties of 6061 Al foams, which were fabricated by P/M and multi-step induction heating method, and to build the database, which is needed for computer aided modeling or foam components design. Aluminium foams, consisting of solid aluminium and large quantities of porosities, is widely used in automotive, aerospace, naval as well as functional applications because of its high stiffness at very low density, high impact energy absorption, heat and fire resistance, and greater thermal stability than any organic material. In this study, 6061 Al foams were fabricated for variation of fraction of porosities (%) according to porosities (%)-final heating temperature ( $T_{a3}$) curves. Mechanical properties such as compressive strength, energy absorption capacity, and efficiency were investigated to evaluate the feasibility of foams as crash energy absorbing components. Moreover, effect of the surface skin thickness on plateau stress and strain sensitivity of the 6061 Al foams with low porosities (%) were studied.d.