• Title/Summary/Keyword: Inductance Measurement

Search Result 144, Processing Time 0.025 seconds

Fundamental Research on the Measurement and Control System of Level Sensor for Launch Vehicle Propellant Tanks (발사체 추진제 탱크 수위 측정 및 제어 시스템 기초연구)

  • Shin, Dong-Sun;Han, Sang-Yeop;Cho, In-Hyun;Lee, Eung-Shin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.393-396
    • /
    • 2008
  • Propellant consumption control for space launch vehicle can be achieved by propellant utilization system (PUS) and tank depletion system (TDS). In the course of developing new space launch vehicles, the main target of design is on reducing of space launch vehicle weight, which results in increasing both specific impulse and payload weight. The weights of space launch vehicles are generally allocated to structure, propulsion system, and propellants loaded. The quantity of propellants filled in propellant tanks may be estimated with the propellants actually consumed by propulsion system to complete its mission and the propellants left on-board at the time of engine shut-off. To minimize the remaining quantity of propellants on-board the supplying propellants' O/F ratio should be controlled from the certain time before engine shutdown. To control an O/F ratio, a control system, which accurately measures and compares the remainder of propellants in tanks and pipes, should be needed. This paper solely dedicates its contents to explore the merits and demerits of various level sensor, which is one of the important elements for PUS and TDS, and the transmission and control of signals within space launch vehicle.

  • PDF

Measurement of Transient Current by using the Rogowski Coil (로고우스키코일을 이용한 과도전류의 측정)

  • 이복희;길경석;정승수;정상진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1206-1213
    • /
    • 1994
  • This paper presents the operation principle and design rule of the Rogowski coil which can measure the transient current and describes the calibration and application experimental results for performance evaluation. It is obtained that the response curves of the Robowski coil with the turns of 300 and the passive integrator to sinusoidal input give a good linearity up to the frequency of 500 [kHz] and the current measurement system gaving the Rogowski coil is the frequency bandwidth of 40 [Hz]~700 [kHz]. As an application experiment for the fabricated modeling power transmission line, the impulse current, which limitates the direct lightning return stroke to overhead ground wire, is measured by the Rogowski coil and its fast Fourier transformation is carried out. The equivalent circuit of the Rogowski coil considering the stray capacitances is proposed, and the theoretical analysis is in good agreement with the measurement results. Also, it is found that for high frequency domain the stray capacitance such as a distributed capacitance to the shield and the capacitance between windings of coil should be considered in designing the Rogowski coils since the resonance originates from the stray capacitance and the self-inductance of the Rogowski coil.

  • PDF

Analysis of the Frequency Dependent Characteristics of Ground Impedance of a Ground Rod (봉상접지전극의 접지임피던스의 주파수의존성의 분석)

  • 이복희;엄주홍
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.8
    • /
    • pp.426-432
    • /
    • 2004
  • This paper presents a systematic approach of measurement, modeling and analysis of grounding system impedance in the field of lightning protection system and intelligent power equipments. The measurement and analysis system of ground impedance is based on a computer aided technique. The magnitude and phase of ground impedance were determined by the novel measurement and analysis using the revised fall-of-potential method. The ground impedances of the ground rod of 50 m long are considerably dependent on the frequency. The ground impedance is mainly resistive in the frequency range of 3-20 kHz. At higher frequencies, the reactive components of the ground impedances are no longer negligible and the inductance of the ground rod was found to be the core factor deciding the ground impedance. Although the steady-state ground resistance of the ground rod of 50 m was less than that of the ground rod of 10 m, the ground impedances of the ground rod of 50 m over the frequency range of more than 60 kHz were much greater than those of the ground rod of 10 m. Furthermore, the equivalent circuit model based on the measured data was proposed. and the calculated results were in approximately agreement with the measured data.

Development of Optical Signal Transmission for the KSTAR Project Pertaining to Instrumentation and Control of the Neutral Beam Test Stand at KAERI

  • Jung, Ki-Sok;Oh, Byung-Hoon
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.289-295
    • /
    • 2005
  • Instrumentation and Control (I&C) of the Neutral Beam Test Stand (NB- TS) Facility at the Korea Atomic Energy Research Institute (KAERI) for the Korea Superconducting Tokamak Advanced Research (KSTAR) project has been underway since the start of the project to answer the diverse requests arising from the various facets of the development and construction phases of the project. Optical signal transmission constitutes a significant portion of I&C works and has been performed for the entirety of the project. During the NB- TS construction and related experiments, significant achievements to a more accurate as well as more refined optical signal transmissions have been made. Examples of those I&C works that utilized the optical signal transmission are the Langmuir probe signal transmission, gradient grid current signal transmission, gas flow control and signal transmission, ion source temperature measurement, beam line component temperature monitoring, and coolant flow signal transmission, etc. These optical signal transition provisions are now performing part of the indispensable functions for the proper operation of the NB- TS facility. Attained experience and expertise are expected to be well applied to the upcoming main neutral beam injection (NBI) system construction for the KSTAR project.

The Estimation on Switching Technique via Output Power Source Analysis of Power Conversion System in an Electric Railway Vehicle (철도차량내의 전력변환장치 출력전원 분석을 통한 스위칭 기법 추정)

  • Kim, Jae-Moon;Lee, Eul-Jae;Yun, Cha-Jung;Kim, Yang-Su
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.185-190
    • /
    • 2010
  • This paper presents the estimation on switching technique via output power source analysis of power conversion unit in electric railway vehicle. The focus of this study suggested an alternative on critical problems by using head electric power(HEP). To achieve this, we have measured output power of HEP, and measurement devices set up at output of transformer connected HEP to analysis quality on output power source of head electric power(HEP) unit in electric railway vehicle. Using results of measurement of it, parameters are assumed for simulation to confirm estimation on switching technique. It is confirmed that switching technique is Selected Harmonic Elimination PWM(SHEPWM) and inverter switching frequency is less than 500[Hz]. Throughout experiment and simulation, it is estimated that switching technique used HEP is advanced SHEPWM and switching frequency is about 300[Hz]. Also leakage inductance in transformer is about $180[{\mu}H]$ less than $365[{\mu}H]$ known.

The study on the DC Ic measurement and AC loss in the 22.9kV, 50MVA HTS power cable (22.9kV/50MVA급 고온초전도 전력케이블의 DC Ic 측정 및 교류손실에 관한 연구)

  • Choi, Suk-Jin;Lee, Sang-Jin;Sim, Ki-Deok;Cho, Jeon-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.808-809
    • /
    • 2008
  • 22.9kV 50MVA HTS power cable has been developed and tested by Korea Electrotechnology Research Institute and LS Cable Company and it was supported by a grant from Center for Applied Superconductivity Technology of the 21st Century Frontier R&D Program. In this paper, DC Ic of 100m HTS cable which is installed at Kochang testing station was measured and analyzed. A measurement technique of DC Ic used by resistance and inductance removal method is established. The HTS power cable is composed of 2 layers for transmission and 1 layer for shield. For the analysis of AC losses in an HTS power cable, 2-dimensional numerical calculation was carried out to define the magnetic field distribution. We calculated the magnetization losses in the HTS core of that cable from these fields. These calculated results are in accordance with those of experiment.

  • PDF

A New Algorithm of B-waveform Control for the Measurement of Two-dimensional Magnetic Properties of Electrical Steel Sheets using Single Sheet Tester (SST를 이용한 전기강판의 2차원 자기특성 측정을 위한 새로운 자속밀도 파형 제어법)

  • Eum, Young-Hwan;Yoon, Hee-Sung;Koh, Chang-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1167-1174
    • /
    • 2008
  • The measurement of two-dimensional magnetic properties of electrical steel sheet using single sheet tester (SST) requires to control the B-waveform as sinusoidal. The SST electric circuit, in general, has inductance, and this makes the phase lag in electric current. For this reason, the induced voltages of H- or B-coil may have phase difference from the exciting voltage. In this paper, a new algorithm is developed to compensate the phase difference and makes the B-waveform control efficient. The developed algorithm experimentally calculates the phase difference based on the measured waveform of the induced voltage for the magnetic field intensity along transverse direction. By using the proposed algorithm, the two-dimensional magnetic properties of grain-orientated electrical steel sheet (30PG110) is measured up to 2T. By comparing the measured B- and H-waveforms, the effectiveness of the proposed algorithm is proven.

Development of Resonant-Type Magnetometer Using High Permeability Isotropic Magnetic Material (고투자율 등방성 자기 물질을 이용한 공진형 마그네토미터 개발)

  • Yim, Jeong-Bin;Shim, Yeong-Ho;Ahn, Yeong-Sub
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.11 no.1 s.22
    • /
    • pp.29-37
    • /
    • 2005
  • The design and development if Resonant-type Magnetometer(RM) using isotropic magnetic with high permeability is described in this paper. At first, the relationship between the inductance L if the coil winding on a magnetic material and the permeability u(H) appearing in the magnetic material with isotropic and high permeability is defined as a background theory. Then the circuit if RM, which is to obtain the values if L as the change qf frequency is implemented using simple Schmitt Trigger Circuit Through the swinging tests, which is to evaluate the measurement ability if RM, the measurement possibility for the component of earth field was confined.

  • PDF

Development Study on the Prototype of Level Measurement System of Launch Vehicle Propellant Tanks (추진제 충전량 측정시스템 시제 개발 연구)

  • Shin, Dong-Sun;Han, Sang-Yeop;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.590-593
    • /
    • 2010
  • The processes of supplying propellants into propellant tanks play important roles during launch preparation of satellite launch vehicle. The total weight of launch vehicle greatly depends on the accuracy of filling quantity of propellant during launch preparation. Among propellants used for launch vehicles a cryogenic propellant such as liquid oxygen is widely adapted as an oxidizer for launch vehicles. Such cryogenic propellant usually resides in a propellant tank as two-phase fluid with liquid and gas, which needs an accurate level measurement system to detect the position of propellant surface precisely. In this paper the fabricating process of a level measurement system using capacitance type with three electrodes is analyzed. In addition, the change of electric signal according to the height of liquid is verified by testing the level measurement system under consideration. The results of tests shows as expected the linear trend of voltage according to the change of water height in a tank.

  • PDF

A Study on the Automatic Measurement of Solid Content in Recycled Water in Ready Mixed Concrete Plant (레디믹스트 콘크리트 플랜트의 회수수 농도 측정 자동화에 관한 연구)

  • Choi, Young-Cheol;Moon, Gyu-Don;Cho, Bong-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.123-131
    • /
    • 2014
  • Whole amount of waste water, approximately 921.6 liter, for cleaning a ready mixed concrete truck should be used to produce concrete as a mixing water or cleaning water. Recycling water for concrete mixing contains solids, which cause decrease in slump, air and compressive strengths, so it may influence on poor concrete quality. Therefore, it has been maintained to use recycling water with less than 3 percent of solids. Since no evaluation system has been constructed to directly reflect on variability of recycling water from ready mixed concrete plants, it is necessary to develop "Automatic recycling solid measuring system" for quality controls in real time. In this research, sensors measuring waste water concentration in ultrasonic and inductance methods were developed, and automatic system using the sensors were established. The accuracy of measurement sensors developed for recycling water based on various conditions of concentration was proved, and application limits were evaluated. Also, concentration of recycling water using sensors developed from ready mixed concrete plant was measured, and curing method verified the accuracy of the sensors. Moreover, measurement sensors for recycling water in various locations were installed to evaluate the effects on measuring method and spots. The automatic measuring system for recycling water concentration, which is developed in the research, will contribute to improve concrete quality safety through reliable solids maintenance.