• Title/Summary/Keyword: Inductance Error

Search Result 68, Processing Time 0.028 seconds

Analysis of Estimated Position Error by Magnetic Saturation and Compensating Method for Sensorless Control of PMSM (자속 포화에 의한 PMSM 센서리스 위치 추정 오차 분석 및 보상 기법)

  • Park, Byung-Jun;Gu, Bon-Gwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.3
    • /
    • pp.430-438
    • /
    • 2019
  • For a pump or a compressor motor, a high periodic load torque variation is induced by the mechanical works, and it causes system vibration and noise. To minimize these problems, load torque compensation method, injecting periodic torque current, could be utilized. However, with the sensorless control method, which is usually utilized in the pump and compressor for low cost, the periodic torque current degrades the accuracy of the rotor position estimation owing to the inductance variation. This paper analyzes the rotor position and speed estimation error of sensorless control method with constant motor parameters under period loading. Assuming the constant speed by the accurate load torque compensation, the speed error equation is derived in frequency domain with inductance depending on the stator current. Further, it is also shown that the rotor position error could be minimized by compensating the inductance variation. The simulation and experimental results verify that the derived speed error model and the validity of the inductance compensation method.

Harmonic Analysis of the Effects of Inverter Nonlinearity on the Offline Inductance Identification of PMSMs Using High Frequency Signal Injection

  • Wang, Gaolin;Wang, Ying;Ding, Li;Yang, Lei;Ni, Ronggang;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1567-1576
    • /
    • 2015
  • Offline inductance identification of a permanent magnet synchronous motor (PMSM) is essential for the design of the closed-loop controller and position observer in sensorless vector controlled drives. On the base of the offline inductance identification method combining direct current (DC) offset and high frequency (HF) voltage injection which is fulfilled at standstill, this paper investigates the inverter nonlinearity effects on the inductance identification while considering harmonics in the induced HF current. The negative effects on d-q axis inductance identifications using HF signal injection are analyzed after self-learning of the inverter nonlinearity characteristics. Then, both the voltage error and the harmonic current can be described. In addition, different cases of voltage error distribution with different injection conditions are classified. The effects of inverter nonlinearities on the offline inductance identification using HF injection are validated on a 2.2 kW interior PMSM drive.

The Inductance Computation of IPMSM using Current Vector Control Test (전류벡터제어시험법에 의한 IPMSM의 인덕턴스 산정)

  • Cho, Gyu-Won;Lee, Jung-Gyu;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1807-1812
    • /
    • 2012
  • In this paper, the d, q-axis inductance of IPMSM(Interior Permanent Magnet Synchronous Motor) was calculated by the FEA(Finite Element Analysis). And the CVCT(Current Vector Control Test) was performed, and compared with FEA. Therefore the inductance experiment according to the variation of the current phase angle was performed. However, the error was generated in the fundamental wave detection of the voltage and current waveform. So, error has largely effect on the result of computation, it has to note specially. In addition, by using the calculated inductance, the torque calculation was performed and this result was compared through the dynamometer experiment.

A study on Performance Improvement of SPMSM with Improved Decoupling Current Controller (개선된 비간섭 전류제어기를 이용한 영구자석 동기 전동기의 성능 향상에 관한 연구)

  • Cho, Su-Eog;Kim, Jeong-Su;Kim, Cheul-U
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.151-159
    • /
    • 2007
  • This paper proposes a improved decoupling current control algorithms using a compensator to enhance the robustness to the stator inductance error. And the compensator composed from a d-axis current error for sensing change of the real stator inductance can match the estated stator inductance to the real stator inductance. A great advantage of this algorithms is more robust than feedforward decoupling current control or dynamic decoupling control. So it looks suitable to the practical applications where the exact parameters are unknown. Though simulation and experimental results with 1[kW] prototype PMSM and TMS320F2812 board for motor control, we show that the proposed controller achieves the desired performance.

A Compensation Method for Mutual Inductance Variation of the Induction Motor by Using Improved Speed Estimator (개선된 속도 추정기에 의한 유도전동기 자화 인덕턴스 변동 보상법)

  • 최정수;김영석;김상욱
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.505-508
    • /
    • 1999
  • Conventional adaptive speed estimators cannot avoid the influence of the non-linear inductance variation under the saturation conditions. Without speed sensors, it is difficult to identify the inductance variation using a reactive power mode because the model contains a term of the rotor speed. In this paper, we propose a novel speed estimator having hybrid architecture in order to estimate both the rotor speed and the inductance variation simultaneously when the motor flux is saturated. Proposed estimator consists of the error between the flux obtained from the stator voltage equation and the flux estimated from the rotor flux observer. Introducing a new correction term into the estimator increases the estimation ability of the conventional speed estimator even though the motor flux is saturated. The convergence of the speed estimation error is examined by simulation Furthermore, the experimental results show the validity of the proposed method.

  • PDF

Model Parameter Correction Algorithm for Predictive Current Control of SMPMSM

  • Li, Yonggui;Wang, Shuang;Ji, Hua;Shi, Jian;Huang, Surong
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1004-1011
    • /
    • 2016
  • The inaccurate model parameters in the predictive current control of surface-mounted permanent magnet synchronous motor (SMPMSM) affect the current dynamic response and steady-state error. This paper presents a model parameter correction algorithm based on the relationship between the errors of model parameters and the static errors of dq-axis current. In this correction algorithm, the errors of inductance and flux are corrected in two steps. Resistance is ignored. First, the proportional relations between inductance and d-axis static current errors are utilized to correct the error of model inductance. Second, the flux is corrected by utilizing the proportional relations between flux and q-axis static current errors under the condition that inductance is corrected. An experimental study with a 100 W SMPMSM is performed to validate the proposed algorithm.

The Effect of Transformer Leakage Inductance on the Steady State Performance of Push-pull based Converter with Continuous Current

  • Chen, Qian;Zheng, Trillion Q.;Li, Yan;Shao, Tiancong
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.349-361
    • /
    • 2013
  • As a result of the advantages such as high efficiency, continuous current and high stability margin, push-pull converter with continuous current (PPCWCC) is competitive for battery discharge regulator (BDR) which plays an important role in power conditioning unit (PCU). Leakage inductance yields current spike in low-ripple current of PPCWCCs. The operating modes are added due to leakage inductance. Therefore the steady state performance is affected, which is embodied in the spike of low-ripple current. PPCWCCs which are suitable for BDR can be separated into three types by current spike characteristics. Three representative topologies IIs1, IIcb2 and Is3 are analyzed in order to investigate the factors on the magnitude and duration of spike. Equivalent current sampling method (ECSM) which eliminates the sampling time delay and achieves excellent dynamic performance is adopted to prevent the spike disturbance on current sampling. However, ECSM reduces the sampling accuracy and telemetry accuracy due to neglecting the spike. In this paper, ECSM used in PPCWCCs is summarized. The current sampling error is analyzed in quality and quantity, which provides the foundation for offsetting and enhancing the telemetry accuracy. Finally, current sampling error rate of three topologies is compared by experiment results, which verify the theoretical analysis.

A study on Inductance calculation in Interior Permanent Magnet Synchronous Motor (IPMSM의 인덕턴스 산정에 관한 연구)

  • Lee, Jin-Gyu;Kwon, Soon-O;Sun, Tao;Kim, Hae-Joong;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.880_881
    • /
    • 2009
  • This paper improves the calculating method about the inductance with the high order frequency coreloss. It is different in which the analyzed inductance for calculating IPMSM and the measured thing for experiment. Due to this phenomenon, the expected input voltage differs from the inquired input voltage for operating the motor. This results from the coreloss margin which have both the 1st order and high order frequency value. For reducing the inductance error, after calculating the equivalence coreloss resistance with having the 1st order frequency Back_EMF and coreloss, designing the inductance with the high order frequency which occurred by the coreloss of high order frequency, and comparing the renovated inductance analysis value with the measured thing.

  • PDF

A Sensorless Vector Control System for Induction Motors Using Stator Current Difference

  • Park, Chul-Woo;Choi, Byeong-Tae;Kwon, Woo-Hyen;Ku, Bon-Ho;Youn, Kyung-Sub
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.139.4-139
    • /
    • 2001
  • The thesis propose the sensorless vector control method that estimates the rotor speed using stator current. The estimated speed is used as feedback in a vector control system. The conventional MRAS structure has a problem the error output is decreasing as estimated speed error is increasing and the estimation performance is not robust when mutual inductance has been changed. In the proposed method, error output is proportional to estimated speed error. The described technique is less complex, robust to variations of mutual inductance. This new method can achieve much wider bandwidth speed control than that of the conventional MRAS structure.

  • PDF

Implementation of the simulated-Inductance with a Phase Paramenter Control Circuit (위상 파라미터 제어에 의한 의사 인덕턴스의 구성)

  • 최태호;김덕규
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.2
    • /
    • pp.29-34
    • /
    • 1983
  • A simulated inductance, with a phase parameter control circuit containing only two resistors and one operational amplifier, is realized as a two terminal network. Analytical results of the proposed circuit avow that we can realize a simulated inductance for constant inductance value, and experimental results confirm the theoretical predictions. Error of maximum 4%, between theoretical and experimental results of equivalent inductance, has been observed over a wide range of frequencies up to about 100 KHz.

  • PDF