• 제목/요약/키워드: Inducible nitric oxide

검색결과 1,202건 처리시간 0.034초

Ginsenoside Rg3이 흰쥐 척수압박손상의 초기 염증반응에 미치는 영향 (Effects of Ginsenoside Rg3 on Early-stage Inflammatory Response in Spinal Cord Compression of Rodents)

  • 정벌;이종수
    • 한방재활의학과학회지
    • /
    • 제23권2호
    • /
    • pp.1-15
    • /
    • 2013
  • Objectives : In present study, we investigated the effects of ginsenoside Rg3 on early-stage inflammatory response in spinal cord compression of rodents. Methods : Spinal cord injury(SCI) was induced by a vascular clip method(30 g, 5 min) on the spinal cord of mice. Rg3 was treated orally at 1 hour prior to the SCI induction. Messenger ribonucleic acid(mRNA) expression of tumor necrosis factor-${\alpha}$(TNF-${\alpha}$), interleukin-1${\beta}$(IL-1${\beta}$), interleukin-6(IL-6) and cyclooxygenase-2(COX-2) was measured by the real-time polymerase chain reaction(RT-PCR). Microglia in the spinal cord tissue, neurophils and COX-2 in the peri-lesion and inducible nitric oxide synthase(iNOS) expression in the ventral horn of SCI induced rats were measured by immunohistochemical stain. Results : 1. Rg3 significantly reduced the mRNA expression of TNF-${\alpha}$, IL-1${\beta}$, and COX-2 in the spinal cord tissue compared with SCI group(p<0.05, p<0.01). 2. Rg3 significantly reduced the total number of activated microglia and proportion of phagocytic form in the total activated microglia compared with SCI group(p<0.05, p<0.01). 3. Rg3 significantly reduced myeloperoxidase(MPO) positive neurophil in the peri-lesion compared with SCI group(p<0.05). 4. Rg3 reduced the COX-2 expression in the tissue and motor neurons compared with SCI group. 5. Rg3 significantly reduced iNOS positive motor neurons in the ventral horn compared with SCI group(p<0.01). Conclusions : In conclusion, we demonstrated at first that treatment of ginsenoside Rg3 could reduce significantly the levels of inflammatory mediators in a spinal cord compression model of rodents. Therefore, these results suggested that ginsenoside Rg3 may be a useful antimiflamatory therapeutic candidate for SCI.

숙지양근탕(熟地養筋湯) 추출물이 흰쥐 좌골신경 손상 후에 기능회복과 염증 매개 인자 발현에 미치는 영향 (Effect of Aqueous Extract of Sukjiyanggeun-Tang(shudiyangjin-tang) on Functional Recovery and Expressions of Inflammatory Mediators after Sciatic Nerve Crushed Injury in Rat)

  • 장건;송윤경;임형호
    • 한방재활의학과학회지
    • /
    • 제23권2호
    • /
    • pp.33-48
    • /
    • 2013
  • Objectives : Peripheral nerve injuries are commonly encountered clinical problems and often result in severe functional deficits. Sukjiyanggeun-Tang(shudiyangjin-tang), in oriental medicine, has been used to treat various musculoskeletal disorders. Methods : In the present study, the effects of aqueous extract of Sukjiyanggeun-Tang(shudiyangjin-tang) on functional recovery, severity of pain, and expressions of neurofilament, cycloxygenease-2(COX-2), inducible nitric oxide synthase(iNOS), and tumor necrosis factor-${\alpha}$(TNF-${\alpha}$) following sciatic crushed nerve injury in rats were investigated. For this study, walking tract analysis, plantar test, western blot analysis for COX-2 iNOS, and TNF-${\alpha}$, and Immunofluorescence test for neurofilament were performed. Results : In the present results, sciatic functional index(SFI) in walking tract analysis was significantly decreased following sciatic crushed nerve injury, and pain severity in plantar test was significantly increased. COX-2, iNOS and TNF-${\alpha}$ expressions were increased whereas neurofilament expression was decreased by sciatic crushed nerve injury, In contrast, treatment with Sukjiyanggeun-Tang(shudiyangjin-tang) improved SFI in walking tract analysis and suppressed the pain severity in sciatic crushed nerve injury. Sukjiyanggeun-Tang(shudiyangjin-tang) treatment also suppressed COX-2, iNOS, and TNF-${\alpha}$ expressions and enhanced the neurofilament expression in sciatic crushed nerve injury. Conclusions : In the present study, we have shown that Sukjiyanggeun-Tang(shudiyangjin-tang) is the effective therapeutic modality to ameliorate the symptoms of sciatic crushed nerve injury.

울금과 강황의 항산화 및 항염증 활성 비교연구 (Comparative Study of Anti-oxidant and Anti-inflammatory Activities between Curcumae longae Radix and Curcumae longae Rhizoma)

  • 오혜인;박한별;주미선;정선용;오명숙
    • 대한본초학회지
    • /
    • 제25권1호
    • /
    • pp.83-91
    • /
    • 2010
  • Objectives : In this study, we compared the anti-oxidant and anti-inflammatory activities of Curcumae longae Radix (CLRa) and Curcumae longae Rhizoma (CLRh). Methods : We performed 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) cation scavenging assays, and determined total polyphenolic content to examine the anti-oxidant effects of CLRa and CLRh. We also evaluated the anti-oxidant effects of CLRa and CLRh against hydrogen peroxide ($H_2O_2$)-induced toxicity in PC12 cells using thiazolyl blue tetrazolium bromide (MTT) and reactive oxygen species (ROS) assays. Next, to compare the anti-inflammatory effects of CLRa and CLRh against lipopolysaccharide (LPS)-induced inflammation in microglia BV2 cells, we measured nitric oxide (NO) assay and inducible nitrite synthase (iNOS) using Western blotting analysis. Results : CLRa showed higher activity in DPPH and ABTS assays and lower total polyphenolic contents compared with CLRh. In PC12 cells, CLRa and CLRh showed no difference in H2O2-induced cell toxicity and ROS overproduction. In BV2 cells, CLRa showed higher effect than CLRh in NO and iNOS production induced by LPS. Conclusions : These results demonstrate that CLRa has higher radical scavenging activities and anti-inflammatory effect in BV2 cells comparing CLRh. However, CLRa and CLRh have no effect and no difference in $H_2O_2$-induced toxicity.

Cancer Chemoprevention by Tea Polyphenols Through Modulating Signal Transduction Pathways

  • Lin, Jen-Kun
    • Archives of Pharmacal Research
    • /
    • 제25권5호
    • /
    • pp.561-571
    • /
    • 2002
  • The action mechanisms of several chemopreventive agents derived from herbal medicine and edible plants have become attractive issues in cancer research. Tea is the most widely consumed beverage worldwide. Recently, the cancer chemopreventive actions of tea have been intensively investigated. It have been demonstrated that the active principles of tea were attributed to their tea polyphenols. Recently, tremendous progress has been made in elucidating the molecular mechanisms of cancer chemoprevention by tea and tea polyphenols. The suppression of various tumor biomarkers including growth factor receptor tyrosine kinases, cytokine receptor kinases, P13K, phosphatases, ras, raf, MAPK cascades, NㆍFB, IㆍB kinase, PKA, PKB, PKC, c-jun, c-fos, c-myc, cdks, cyclins, and related transducing proteins by tea polyphenols has been studied in our laboratory and others. The IㆍB kinase (IKK) activity in LPS-activated murine macrophages (RAW 264.7 cells) was found to be inhibited by various tea polyphenols including (-) epigallocatechin-3-gallate (EGCG), theaflavin (TF-1), theaflavin-3-gal-late (TF-2) and theaflavin-3,3'-digallate (TF-3). TF-3 inhibited IKK activity in activated macrophages more strongly than did the other tea polyphenols. TF-3 inhibited both IKK1 and IKK2 activity and prevented the degradation of IㆍBㆍand IㆍBㆍin activated macrophage cells. The results suggested that the inhibition of IKK activity by TF-3 and other tea polyphenols could occur by a direct effect on IKKs or on upstream events in the signal transduction pathway. TF-3 and other tea polyphenols blocked phosphorylation of IB from the cytosolic fraction, inhibited NFB activity and inhibited increases in inducible nitric oxide synthase levels in activated macrophage. TF-3 and other tea polyphenols also inhibited strongly the activities of xanthine oxidase, cyclooxygenase, EGF-receptor tyrosine kinase and protein kinase C. These results suggest that TF-3 and other tea polyphenols may exert their cancer chemoprevention through suppressing tumor promotion and inflammation by blocking signal transduction. The mechanisms of this inhibition may be due to the blockade of the mitogenic and differentiating signals through modulating EGFR function, MAPK cascades, NFkB activation as wll as c-myc, c-jun and c-fos expression.

Differential Regulation of Cytochrome P450 Isozyme mRNAs and Proteins by Femur Fracture Trauma

  • Lee, Woo-Young;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • 제26권12호
    • /
    • pp.1079-1086
    • /
    • 2003
  • The aim of this study was to investigate the effect of trauma on cytochrome P450 (CYP) gene expression and to determine the role of Kupffer cells in trauma-induced alteration of CYP isozymes. Rats underwent closed femur fracture (FFx) with associated soft-tissue injury under anesthesia. To deplete Kupffer cells in vivo, gadolinium chloride ($GdCl_3$) was intravenously injected at 7.5 mg/kg body wt., 1 and 2 days prior to FFx surgery. At 72 h of FFx, liver tissues were isolated to determine the mRNA and protein expression of CYP isozymes and NADPH-P450 reductase by reverse transcription-polymerase chain reaction and Western immunoblotting, respectively. In addition, the mRNA levels of tumor necrosis factor alpha (TNF-$\alpha$), inducible nitric oxide synthase (iNOS) and heme oxygenase-1 (HO-1) were evaluated. FFx increased the mRNA level of CYP1A1; an increase that was not prevented by $GdCl_3$. There were no significant differences in the mRNA expression of CYP1A2, 2B1 and 2E1 among any of the experimental groups. The protein levels of CYP2B1 and 2E1 were significantly decreased by FFx; a decrease that was not prevented by $GdCl_3$ treatment. The gene expression of NADPH-P450 reductase was unchanged by FFx. FFx significantly increased the expression of TNF-$\alpha$ mRNA; an increase that was attenuated by $GdCl_3$. The mRNA expression of HO-1 was increased by FFx, but not by $GdCl_3$ . Our findings suggest that FFx differentially regulates the expression of CYP isozyme through Kupffer cell-independent mechanisms.

Korean Red Ginseng alleviates neuroinflammation and promotes cell survival in the intermittent heat stress-induced rat brain by suppressing oxidative stress via estrogen receptor beta and brain-derived neurotrophic factor upregulation

  • Iqbal, Hamid;Kim, Si-Kwan;Cha, Kyu-Min;Jeong, Min-Sik;Ghosh, Prachetash;Rhee, Dong-kwon
    • Journal of Ginseng Research
    • /
    • 제44권4호
    • /
    • pp.593-602
    • /
    • 2020
  • Background: Heat stress orchestrates neurodegenerative disorders and results in the formation of reactive oxygen species that leads to cell death. Although the immunomodulatory effects of ginseng are well studied, the mechanism by which ginseng alleviates heat stress in the brain remains elusive. Methods: Rats were exposed to intermittent heat stress for 6 months, and brain samples were examined to elucidate survival and antiinflammatory effect after Korean Red Ginseng (KRG) treatment. Results: Intermittent long-term heat stress (ILTHS) upregulated the expression of cyclooxygenase 2 and inducible nitric oxide synthase, increasing infiltration of inflammatory cells (hematoxylin and eosin staining) and the level of proinflammatory cytokines [tumor necrosis factor α, interferon gamma (IFN-γ), interleukin (IL)-1β, IL-6], leading to cell death (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay) and elevated markers of oxidative stress damage (myeloperoxidase and malondialdehyde), resulting in the downregulation of antiapoptotic markers (Bcl-2 and Bcl-xL) and expression of estrogen receptor beta and brain-derived neurotrophic factor, key factors in regulating neuronal cell survival. In contrast, KRG mitigated ILTHS-induced release of proinflammatory mediators, upregulated the mRNA level of the antiinflammatory cytokine IL-10, and increased myeloperoxidase and malondialdehyde levels. In addition, KRG significantly decreased the expression of the proapoptotic marker (Bax), did not affect caspase-3 expression, but increased the expression of antiapoptotic markers (Bcl-2 and Bcl-xL). Furthermore, KRG significantly activated the expression of both estrogen receptor beta and brain-derived neurotrophic factor. Conclusion: ILTHS induced oxidative stress responses and inflammatory molecules, which can lead to impaired neurogenesis and ultimately neuronal death, whereas, KRG, being the antioxidant, inhibited neuronal damage and increased cell viability.

Hypoxia-Induced Endothelial Progenitor Cell Function Is Blunted in Angiotensinogen Knockout Mice

  • Choi, Jin-Hwa;Nguyen, Minh-Phuong;Lee, Dongjin;Oh, Goo-Taeg;Lee, You-Mie
    • Molecules and Cells
    • /
    • 제37권6호
    • /
    • pp.487-496
    • /
    • 2014
  • Angiotensinogen (AGT), the precursor of angiotensin I, is known to be involved in tumor angiogenesis and associated with the pathogenesis of coronary atherosclerosis. This study was undertaken to determine the role played by AGT in endothelial progenitor cells (EPCs) in tumor progression and metastasis. It was found that the number of EPC colonies formed by AGT heterozygous knockout ($AGT^{+/-}$) cells was less than that formed by wild-type (WT) cells, and that the migration and tube formation abilities of $AGT^{+/-}$ EPCs were significantly lower than those of WT EPCs. In addition, the gene expressions of vascular endothelial growth factor (VEGF), Flk1, angiopoietin (Ang)-1, Ang-2, Tie-2, stromal derived factor (SDF)-1, C-X-C chemokine receptor type 4 (CXCR4), and of endothelial nitric oxide synthase (eNOS) were suppressed in $AGT^{+/-}$ EPCs. Furthermore, the expressions of hypoxia-inducible factor (HIF)-$1{\alpha}$and $-2{\alpha}$ were downregulated in $AGT^{+/-}$ early EPCs under hypoxic conditions, suggesting a blunting of response to hypoxia. Moreover, the activation of Akt/eNOS signaling pathways induced by VEGF, epithelial growth factor (EGF), or SDF-$1{\alpha}$ were suppressed in $AGT^{+/-}$ EPCs. In $AGT^{+/-}$ mice, the incorporation of EPCs into the tumor vasculature was significantly reduced, and lung tumor growth and melanoma metastasis were attenuated. In conclusion, AGT is required for hypoxia-induced vasculogenesis.

Scutellarein Reduces Inflammatory Responses by Inhibiting Src Kinase Activity

  • Sung, Nak Yoon;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권5호
    • /
    • pp.441-449
    • /
    • 2015
  • Flavonoids are plant pigments that have been demonstrated to exert various pharmacological effects including anti-cancer, anti-diabetic, anti-atherosclerotic, anti-bacterial, and anti-inflammatory activities. However, the molecular mechanisms in terms of exact target proteins of flavonoids are not fully elucidated yet. In this study, we aimed to evaluate the anti-inflammatory mechanism of scutellarein (SCT), a flavonoid isolated from Erigeron breviscapus, Clerodendrum phlomidis and Oroxylum indicum Vent that have been traditionally used to treat various inflammatory diseases in China and Brazil. For this purpose, a nitric oxide (NO) assay, polymerase chain reaction (PCR), nuclear fractionation, immunoblot analysis, a kinase assay, and an overexpression strategy were employed. Scutellarein significantly inhibited NO production in a dose-dependent manner and reduced the mRNA expression levels of inducible NO synthase (iNOS) and tumor necrosis factor (TNF)-${\alpha}$ in lipopolysaccharide (LPS)-activated RAW264.7 cells. In addition, SCT also dampened nuclear factor (NF)-${\kappa}B$-driven expression of a luciferase reporter gene upon transfection of a TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF) construct into Human embryonic kidney 293 (HEK 293) cells; similarly, NF-${\kappa}B$ nuclear translocation was inhibited by SCT. Moreover, the phosphorylation levels of various upstream signaling enzymes involved in NF-${\kappa}B$ activation were decreased by SCT treatment in LPS-treated RAW264.7 cells. Finally, SCT strongly inhibited Src kinase activity and also inhibited the autophosphorylation of overexpressed Src. Therefore, our data suggest that SCT can block the inflammatory response by directly inhibiting Src kinase activity linked to NF-${\kappa}B$ activation.

Anti-inflammatory activity of AP-SF, a ginsenoside-enriched fraction, from Korean ginseng

  • Baek, Kwang-Soo;Hong, Yong Deog;Kim, Yong;Sung, Nak Yoon;Yang, Sungjae;Lee, Kyoung Min;Park, Joo Yong;Park, Jun Seong;Rho, Ho Sik;Shin, Song Seok;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제39권2호
    • /
    • pp.155-161
    • /
    • 2015
  • Background: Korean ginseng is an ethnopharmacologically valuable herbal plant with various biological properties including anticancer, antiatherosclerosis, antidiabetic, and anti-inflammatory activities. Since there is currently no drug or therapeutic remedy derived from Korean ginseng, we developed a ginsenoside-enriched fraction (AP-SF) for prevention of various inflammatory symptoms. Methods: The anti-inflammatory efficacy of AP-SF was tested under in vitro inflammatory conditions including nitric oxide (NO) production and inflammatory gene expression. The molecular events of inflammatory responses were explored by immunoblot analysis. Results: AP-SF led to a significant suppression of NO production compared with a conventional Korean ginseng saponin fraction, induced by both lipopolysaccharide and zymosan A. Interestingly, AP-SF strongly downregulated the mRNA levels of genes for inducible NO synthase, tumor necrosis factor-${\alpha}$, and cyclooxygenase) without affecting cell viability. In agreement with these observations, AP-SF blocked the nuclear translocation of c-Jun at 2 h and also reduced phosphorylation of p38, c-Jun N-terminal kinase, and TAK-1, all of which are important for c-Jun translocation. Conclusion: Our results suggest that AP-SF inhibits activation of c-Jun-dependent inflammatory events. Thus, AP-SF may be useful as a novel anti-inflammatory remedy.

Korean red ginseng extract alleviates advanced glycation end product-mediated renal injury

  • Quan, Hai Yan;Kim, Do Yeon;Chung, Sung Hyun
    • Journal of Ginseng Research
    • /
    • 제37권2호
    • /
    • pp.187-193
    • /
    • 2013
  • The effect of Korean red ginseng (KRG) on diabetic renal damage was investigated using streptozotocin (STZ)-induced diabetic rats. The diabetic rats showed loss of body weight gain, and increases in kidney weight and urine volume, whereas the oral administration of KRG at a dose of 100 or 250 mg/kg of body weight per day for 28 d prevented these diabetes-induced physiological abnormalities. Among the kidney function parameters, elevated plasma levels of urea nitrogen and creatinine in diabetic control rats tended to be lowered in KRG-treated rats. In addition, administration of KRG at a dose of 100 mg/kg body weight in the diabetic rats showed significant decreases in serum glucose and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), implying that KRG might prevent the pathogenesis of diabetic complications caused by impaired glucose metabolism and oxidative stress. KRG also significantly reduced advanced glycation end product (AGE) formation and secretion from kidney of diabetic rats. Furthermore, KRG decreased the levels of N-(carboxymethyl) lysine and expression of AGE receptor. KRG also reduced the overexpression of cyclooxygenase-2 and inducible nitric oxide synthase in the kidney via deactivation of nuclear factor-kappa B. We also found that KRG prevented STZ-induced destruction of glomerular structure and significantly suppressed high glucose-induced fibronectin production. Taken together, KRG ameliorates abnormalities associated with diabetic nephropathy through suppression of inflammatory pathways activated by TNF-${\alpha}$ and AGEs. These findings indicate that KRG has a beneficial effect on pathological conditions associated with diabetic nephropathy.