• Title/Summary/Keyword: Inducible nitric oxide

Search Result 1,202, Processing Time 0.032 seconds

Anti-inflammatory Effect of Zostera marina Ethanolic Extract on LPS-induced RAW264.7 Cells and Mouse Model (LPS로 유도된 RAW264.7 Cell과 마우스모델에 대한 잘피 에탄올 추출물의 항염증 효과)

  • Kim, Min-Ji;Bae, Nan-Young;Kim, Koth-Bong-Woo-Ri;Park, Ji-Hye;Park, Sun-Hee;Cho, Young-Je;Ahn, Dong-Hyun
    • KSBB Journal
    • /
    • v.30 no.4
    • /
    • pp.182-190
    • /
    • 2015
  • The Zostera marina ethanolic extract (ZMEE) was tested in this study to investigate the anti-inflammatory activity in LPS-induced RAW 264.7 cells and mouse model. Nitric oxide production and inducible nitiric oxide synthase expression in cells treated with ZMEE was reduced significantly in a dose-dependent manner. Similarly, the secretion of pro-inflammatory cytokines such as interleukin (IL)-6, IL-$1{\beta}$, and TNF-${\alpha}$ was inhibited markedly. In addition, the expression of nuclear factor kappa B (NF-${\kappa}B$) and the phosphorylation of JNK, ERK, and p38 MAPKs was suppressed by ZMEE as well. In vivo test, ZMEE attenuated the croton oil-induced mouse ear edema and there were no mortalities in mice administered 5,000 mg/kg body weight of ZMEE during the observation periods. The results in photomicrograph of mice ear tissue showed the reduction of dermal thickness and the number of infiltrated mast cells. These results indicate that ZMEE inhibits the production of LPS-induced pro-inflammatory mediators, suggesting that ZMEE may be a potential material for anti-inflammatory therapies.

Prototypes of Panaxadiol and Panaxatriol Saponins Suppress LPS-mediated iNOS/NO Production in RAW264.7 Murine Macrophage Cells (RAW264.7 대식세포에서 LPS 매개 iNOS/NO 생성에 대한 protopanaxadiol saponin 및 protopanaxatriol saponin의 억제효과)

  • Kim, Jin-Ik;Narantuya, Nandintsetseg;Choi, Yong-Won;Kang, Dae-Ook;Kim, Dong-Wan;Lee, Kyoung;Ko, Sung-Ryong;Moon, Ja-Young
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1422-1430
    • /
    • 2016
  • This study was performed to investigate the modulatory effects of two prototypes of Panax ginseng saponin fractions, 20(S)-protopanaxadiol saponins (PDS) and 20(S)-protopanaxatriol saponins (PTS), on the induction of inflammatory mediators in lipopolysaccharide (LPS)-treated RAW264.7 murine macrophage cells. For this purpose, RAW264.7 cells were treated with LPS ($10{\mu}g/ml$) before, after, or simultaneously with PDS or PTS ($150{\mu}g/ml$), and the released level of nitric oxide (NO) and expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were evaluated. When RAW264.7 cells were treated with LPS and ginseng saponin fractions simultaneously for 24 hr, PTS, compared to PDS, more strongly attenuated the NO production induced by LPS treatment. When the cells were pretreated with LPS for 2 hr followed by PDS or PTS treatment for 24 hr, both ginseng saponins strongly reduced NO release. The pretreatment of RAW264.7 cells with PDS or PTS for 2 hr followed by LPS treatment for 24 hr significantly attenuated the LPS-induced production of NO. PTS showed stronger inhibitory potency to NO generation than PDS. Our western blot experiment showed that both PDS and PTS ($150{\mu}g/ml$) also significantly down-regulated the expressions of iNOS and COX-2 induced by LPS treatment. Our results suggest that both PDS and PTS possess strong protective effects against LPS-stimulated inflammation and that their protective effects are mediated by the suppression of NO synthesis via down-regulation of pro-inflammatory enzymes, iNOS, and COX-2 in the RAW264.7 cells.

Screening of Useful Plants with Anti-inflammatory and Antioxidant Activity (항염증 및 항산화 활성 보유 유용 식물 탐색)

  • Lee, Seung-Eun;Choi, Jehun;Lee, Jeong-Hoon;Noh, Hyung-Jun;Kim, Geum-Sook;Kim, Jinkyung;Chung, Hae-Young;Kim, Seung-Yu
    • Korean Journal of Plant Resources
    • /
    • v.26 no.4
    • /
    • pp.441-449
    • /
    • 2013
  • This study was conducted to select some useful plants as functional material candidates. A total of 38 plants were preliminarily screened for the anti-inflammatory and antioxidant activities. The preliminarily selected 8 plants were further investigated to verify the in vitro inhibitory effect on inflammation and oxidative stress. Boehmeria platanifolia (root), Carpinus coreana (branch), and Eupatorium japonicum (leaf) inhibited the expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Eupatorium japonicum (leaf) suppressed the expression of cyclooxygenase-2 (COX-2), whereas Boehmeria platanifolia (root) and Prunus yedoensis (branch) inhibited the transcription of nuclear factor-kappa B (NF-${\kappa}B$). Treatment with the extracts ($2.5{\sim}20{\mu}g/ml$) of Abutilon theophrasti (leaf, flower/seed) and Hemistepta lyrata (stem) did not show toxicity on RAW 264.7 cell proliferation, but treatment with $2.5{\mu}g/ml$ of Boehmeria platanifolia (root) exhibited cell toxicity. Carpinus coreana (branch) and Prunus yedoensis (branch) showed potent scavenging activities on peroxynitrite. Akebia quinata (flower), Carpinus coreana (branch), and Prunus yedoensis (branch) effectively inhibited reactive oxygen species (ROS). Abutilon theophrasti (leaf), Boehmeria platanifolia (root), Carpinus coreana (branch), and Eupatorium japonicum (leaf) exhibited strong inhibitory capacity with regard to nitric oxide (NO) production. The results suggested that Abutilon theophrasti (leaf) has in vitro anti-inflammatory and antioxidant activities, and that is a useful functional material candidate.

Anti-neuroinflammatory Effect of Teleogryllus emma Derived Teleogryllusine in LPS-stimulated BV-2 Microglia (BV-2 미세아교세포에서 왕귀뚜라미 유래 Teleogryllusine의 신경염증 억제 효과)

  • Seo, Minchul;Shin, Yong Pyo;Lee, Hwa Jeong;Baek, Minhee;Lee, Joon Ha;Kim, In-Woo;Hwang, Jae-Sam;Kim, Mi-Ae
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.999-1006
    • /
    • 2020
  • The suppression of neuroinflammatory responses in microglial cells, well known as the main immune cells in the central nervous system (CNS), are considered a key target for improving the progression of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Teleogryllus emma is widely consumed around the world for its broad-spectrum therapeutic effect. In a previous work, we performed transcriptome analysis on T. emma in order to obtain the diversity and activity of its antimicrobial peptides (AMPs). AMPs are found in a variety of species, from microorganisms to mammals. They have received much attention as candidates oftherapeutic drugs for the treatment of inflammation-associated diseases. In this study, we investigated the anti-neuroinflammatory effect of Teleogryllusine (VKWKRLNNNKVLQKIYFVKI-NH2) derived from T. emma on lipopolysaccharide (LPS) induced BV-2 microglia cells. Teleogryllusine significantly inhibited nitric oxide (NO) production without cytotoxicity, and reducing pro-inflammatory enzymes expression such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In addition, Telegryllusine also inhibited the expression of pro-inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) through down-regulation of the mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathway. These results suggest that T. emma-derived Teleogryllusine could be a good source of functional substances that prevent neuroinflammation and neurodegenerative diseases.

Antiinflammatory Effects of New Chemical Compounds, HS-1580 Series (HS-1580, HS-1581, HS-1582) (신화학물질 HS-1580 유도체(HS-1580 HS-1581 HS-1582)의 항염증 효과)

  • Kim, Ji-Young;Kim, Kyun-Ha;Suh, Hong-Suk;Choi, Won-Chul
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1181-1187
    • /
    • 2006
  • HS-1580 series (HS-1580, HS-1581, HS-1582) can produce anti-imflammatory effects were synthesized from the marine algae extraction in 2,3,6-tribromo-4,5-dihydroxy benzyl methyl ether (TDB). Raw 264.7 cells were pre-treated with $1{\mu}g/{\mu}l$ lipopolysaccharide (LPS) and later treated with HS-1580 series. These cells of inflammatory mediators were tested as well. Nitric oxide (NO) is related to autoimmune disease and is produced by inducible NOS (iNOS). When treated with HS-1580 series, the product of NO will reduce in a dose-dependent manner. HS-1580 series significantly inhibit the iNOS protein expression. Cyclooxygenase (COX) involves with the various physiologic events and catalyzes in prostaglandin. HS-1580 series also inhibit the COX-2 protein expression as well as pro-inflammatory cytokines production such as tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})\;and\;interluekin-1{\alpha]\;(IL-1{\beta})$. These upcoming results suggest that HS-1580 series have anti-inflammatory efforts in Raw 264.7 cells by inhibiting such as iNOS, COX-2, $TNF-{\alpha}\;and\;IL-1{\beta}$ as inflammatory mediators.

Antioxidant effect and iNOS, COX-2 Expression Inhibition on RAW 264.7 Cell of Mangifera indica L. Leafs (애플망고 잎의 추출물의 항산화 및 대식세포(RAW 264.7)에서 iNOS, COX-2 발현 저해 효과)

  • Yoo, Dan-Hee;Lee, In-Chul
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.783-790
    • /
    • 2020
  • The present study investigates the antioxidant and anti-inflammatory activities of Mangifera indica L. leaf extract. The total polyphenol content was measured using the Folin-Denis method. Results showed that the M. indica L. leaf extract of water and 70% ethanol showed a content of 440.83±1.02, 475.63±1.3 mg/100 g tannic acid equivalent. To assess antioxidant activity and electron-donating ability, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging activity were measured, and all extracts were found to be highly efficacious. To assess cell viability of the extract from M. indica L. leaf on macrophage cells (RAW 264.7), a 3-[4,5-dimethyl-thiazol-2- yl]-2,5-diphenyl-tetrazolium-bromide assay was performed. The following experiments were conducted in section where cells was not shown of toxicity. In order to effectively determine anti-inflammatory activity, inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 cells was examined using a Griess assay. The result showed that M. indica L. leaf extract concentration-dependently inhibited NO production. M. indica L. leaf extract was measured using Western blot, reverse transcription- polymerase chain reaction (RT-PCR) that to find the production of pro-inflammatory factor on stimulated RAW 264.7 cells of LPS. According to the results of this study, the M. indica L. leaf extract showed excellent effectiveness in antioxidant and anti-inflammatory activity, thus confirming its usability as a natural material and a functional raw material for cosmetics.

The Effects of Bee Venom and Melittin on NO, iNOS and MAP Kinase Family in RAW 264.7Cellscells (봉양침액(蜂藥鍼液)과 melittin이 RAW 264.7세포(細胞)의 NO, iNOS 및 MAPK에 미치는 영향(影響))

  • Kang, Jun;Song, Ho-sueb
    • Journal of Acupuncture Research
    • /
    • v.21 no.3
    • /
    • pp.107-119
    • /
    • 2004
  • Objective : The purpose of this study was to investigate the effect of Bee Venom and melittin on the lipopolysaccharide(LPS) and sodium nitroprusside(SNP)-induced expressions of Cell viability, nitric oxide(NO), inducible nitric oxide synthase(iNOS), extra-signal response kinase(ERK), jun N-terminal Kinase(JNK) and p38 kinase(p38)- mitogen activated protein kinase(MAPK) Family- in RAW 264.7 cells, a murine macrophage cell line. Methods : The expressions of cell viability by MTT assay, NO by Nitrite assay and iNOS, ERK, JNK and p38 were determined by Western blotting. Results : 1. Compared with the control group, 0.5, 1, $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin increased cell viability of RAW 264.7 induced by LPS and SNP significantly respectively. 2. Compared with the control group, 0.5, 1, $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin inhibited expression of NO induced by LPS and SNP significantly respectively. 3. Compared with the control group, 1, $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin inhibited expression of iNOS induced by LPS significantly and 0.5, 1, $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin inhibited expression of iNOS induced by SNP significantly. 4. Compared with the control group, the expression of ERK induced by LPS and SNP decreased significantly in the treatment groups of $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin, which of p-ERK by LPS also did in 1, $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin, but which of p-ERK by SNP did not decrease. 5. Compared with the control group, the. expression of JNK induced by LPS and SNP decreased significantly in the treatment groups of 5, $10{\mu}g/m{\ell}$ melittin, which of p-JNK by LPS in 5, $10{\mu}g/m{\ell}$ melittin and by SNP in $1{\mu}g/m{\ell}$ bee venom and $10{\mu}g/m{\ell}$ melittin decreased significantly. 6. Compared with the control group, the expression of p38 induced by LPS did not have significant difference, which induced by SNP decreased significantly in the treatment groups of 1, $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin. p-p38 induced by LPS decreased significantly in the treatment group of $10{\mu}g/m{\ell}$ of melittin, which induced by SNP also decreased significantly in 0.5, 1, $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin.

  • PDF

Anti-oxidative and Anti-inflammatory Activities of Desmodium heterocarpon Extract in RAW 264.7 Cells (RAW 264.7 세포에서 Desmodium heterocarpon 추출물의 항산화 및 항염증 활성)

  • Lee, Su Hyeon;Jin, Kyong-Suk;Son, Yu Ri;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.216-222
    • /
    • 2018
  • Desmodium heterocarpon is one of vines belongs to Fabaceae family, mainly distributed in Asian countries such as Korea and Japan. This study was conducted to explore new nutraceutical resources from the plant kingdom possessing biological activities. To fulfill this purpose, the anti-oxidative and anti-inflammatory activities of D. heterocarpon ethanol extract (DHEE) were evaluated by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity assay, reactive oxygen species (ROS) scavenging activity assay, nitric oxide (NO) inhibitory activity assay, and the analysis of related protein expressions by Western blot hybridization. DHEE exhibited potent anti-oxidative activity as confirmed by DPPH radical scavenging capacity against DPPH similar with ascorbic acid, a well-known anti-oxidative agent, used as a positive control. DHEE also effectively suppressed hydrogen peroxide ($H_2O_2$)-induced ROS on RAW 264.7 murine macrophage cells. Furthermore, DHEE induced the expression of the anti-oxidative enzyme heme oxygenase 1 (HO-1), and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2) as a dose dependent manner. DHEE inhibited lipopolysaccharide (LPS) induced nitric oxide (NO) formation as a consequence of inducible NO synthase (iNOS) down regulation. Taken together, these results suggest that DHEE has anti-oxidative and anti-inflammatory activities and thus appears to be useful sources as potential anti-oxidant and anti-inflammatory agents. The identification of active compounds that confer biological activities of DHEE might be needed.

Anti-inflammatory effect of polyphenol-rich extract from the red alga Callophyllis japonica in lipopolysaccharide-induced RAW 264.7 macrophages

  • Ryu, BoMi;Choi, Il-Whan;Qian, Zhong-Ji;Heo, Soo-Jin;Kang, Do-Hyung;Oh, Chulhong;Jeon, You-Jin;Jang, Chul Ho;Park, Won Sun;Kang, Kyong-Hwa;Je, Jae-Young;Kim, Se-Kwon;Kim, Young-Mog;Ko, Seok-Chun;Kim, GeunHyung;Jung, Won-Kyo
    • ALGAE
    • /
    • v.29 no.4
    • /
    • pp.343-353
    • /
    • 2014
  • Despite the extensive literature on marine algae over the past few decades, a paucity of published research and studies exists on red algae. The purpose of this study was to evaluate the potential therapeutic properties of the ethanol extract of the red alga Callophyllis japonica against lipopolysaccharide (LPS)-stimulated macrophage inflammation. The C. japonica extract (CJE) significantly inhibited the nitric oxide (NO) production and the induced dose-dependent reduction of the protein and mRNA levels of inducible nitric oxide synthase and cyclooxygenase-2. Additionally, the CJE reduced the mRNA levels of inflammatory cytokines, including tumor necrosis factor-${\alpha}$, interleukin (IL)-$1{\beta}$, and IL-6. We investigated the mechanism by which the CJE inhibits NO by examining the level of mitogen-activated protein kinases (MAPKs) activation, which is an inflammation-induced signaling pathway in macrophages. The CJE significantly suppressed the LPS-induced phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase and p38 MAPK. Taken together, the results of this study demonstrate that the CJE inhibits LPS-induced inflammation by blocking the MAPK pathway in macrophages.

Research of the Anti-inflammatory Effects of Forsythiae Fructus and Lonicerae Flos Ethanol Extracts (연교(連翹)와 금은화(金銀花) 에탄올 추출물의 항염증 효능 연구)

  • Ryu, Hyo-Kyung;Jung, Min-Jae;Choi, Yu-Jin;Yang, Seung-Jeong;Cho, Seong-Hee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.33 no.3
    • /
    • pp.40-59
    • /
    • 2020
  • Objectives: The purpose of this study was to investigate the anti-inflammatory effects of ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos in vitro, which has been frequently used in inflammatory diseases. Methods: In this experiment, the anti-inflammatory effects of ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos were evaluated by checking the following substances of LPS-activated Raw264.7 cell: Prostaglandin E2 (PGE2), Nitric oxide (NO), Cyclooxygenase-2 (COX-2), inducible Nitric oxide synthase (iNOS), Interlukine-1β (IL-1β), Interlukine-6 (IL-6), Tumor necrosis factor-α (TNF-α), mitogen-activated protein kinase (MAPK), Inhibitor of kappa B-α (IκBα), Nuclear factor kappa B (NF-κB). And additionally measured reactive oxygen species (ROS) and free radicals to check the antioxidant effect of ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos which affect inflammatory responses. Results: As a result of measuring anti-inflammatory efficacy, PGE2, NO, IL-1β, IL-6, TNF-α production amounts were reduced in the ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos groups compared with the control group, and decreased the amount of COX-2 mRNA, iNOS mRNA gene expression. Expression of MAPK (ERK, JNK, p38) pathway was decreased. Expression of IκBα was increased and NF-κB was decreased. It is demonstrated that ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos, by reducing NF-κB, regulate the expression of the inflammatory genes and reduce the inflammatory mediators. Ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos also decreased ROS production and free radicals, which shown to have antioxidant efficacy and influence anti-inflammatory effects. Conclusions: These data suggest that ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos can be used to treat various inflammatory diseases.