• Title/Summary/Keyword: Inducible nitric oxide

Search Result 1,205, Processing Time 0.033 seconds

Anti-inflammatory and antioxidant effects of Barringtonia augusta Kurz extract (Barringtonia augusta Kurz 추출물의 항염증 및 항산화 효능 평가)

  • Ryu, Soo Ho;Kim, Min Jeong;Bach, Tran The;Jung, Sung Keun
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.154-159
    • /
    • 2021
  • Barringtonia augusta Kurz is a species of the genus Barringtonia. Although several studies have analyzed the biological activity of B. racemosa Roxb and B. acutangula, the anti-inflammatory and antioxidant effects of B. augusta extract (BKE) remain unclear. Therefore, in this study, we investigated the anti-inflammatory and antioxidant effects of BKE using lipopolysaccharide (LPS) and RAW 264.7. BKE suppressed LPS-induced nitric oxide (NO) and inducible NO synthase expression without affecting RAW 264.7 cell viability. Additionally, BKE showed 2,2-Diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging capacities and inhibited LPS-induced reactive oxygen species production in RAW 264.7 cells. BKE also suppressed LPS-induced phosphorylation of IκB kinase and nuclear factor kappa-B (NF-κB) and p65 translocation from the cytosol to the nucleus in RAW 264.7 cells. These results suggest that BKE is a possible novel material that exerts beneficial antioxidant and anti-inflammatory effects through the inhibition of NF-κB signaling pathways.

Anti-inflammatory effect of sulforaphane on LPS-stimulated RAW 264.7 cells and ob/ob mice

  • Ranaweera, Sachithra S.;Dissanayake, Chanuri Y.;Natraj, Premkumar;Lee, Young Jae;Han, Chang-Hoon
    • Journal of Veterinary Science
    • /
    • v.21 no.6
    • /
    • pp.91.1-91.15
    • /
    • 2020
  • Background: Sulforaphane (SFN) is an isothiocyanate compound present in cruciferous vegetables. Although the anti-inflammatory effects of SFN have been reported, the precise mechanism related to the inflammatory genes is poorly understood. Objectives: This study examined the relationship between the anti-inflammatory effects of SFN and the differential gene expression pattern in SFN treated ob/ob mice. Methods: Nitric oxide (NO) level was measured using a Griess assay. The inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression levels were analyzed by Western blot analysis. Pro-inflammatory cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-1β, and IL-6) were measured by enzyme-linked immunosorbent assay (ELISA). RNA sequencing analysis was performed to evaluate the differential gene expression in the liver of ob/ob mice. Results: The SFN treatment significantly attenuated the iNOS and COX-2 expression levels and inhibited NO, TNF-α, IL-1β, and IL-6 production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. RNA sequencing analysis showed that the expression levels of 28 genes related to inflammation were up-regulated (> 2-fold), and six genes were down-regulated (< 0.6-fold) in the control ob/ob mice compared to normal mice. In contrast, the gene expression levels were restored to the normal level by SFN. The protein-protein interaction (PPI) network showed that chemokine ligand (Cxcl14, Ccl1, Ccl3, Ccl4, Ccl17) and chemokine receptor (Ccr3, Cxcr1, Ccr10) were located in close proximity and formed a "functional cluster" in the middle of the network. Conclusions: The overall results suggest that SFN has a potent anti-inflammatory effect by normalizing the expression levels of the genes related to inflammation that were perturbed in ob/ob mice.

Studies on Anti-Inflammatory and Anti-Melanogenic Effect of Grape Fruit Stem Extract (포도송이가지 추출물의 항염증 및 미백효능에 대한 연구)

  • Choi, Anna;Lee, Hyun-Seo;Kim, Jang Ho;Cho, Byoung Ok;Shin, Jae Young;Jeong, Seung-Il;Jang, Seon Il
    • The Korea Journal of Herbology
    • /
    • v.32 no.3
    • /
    • pp.71-78
    • /
    • 2017
  • Objectives : The various grape extracts derived from grape pulp, seed and skin, containing various types of polyphenols and flavonoids, have been known to have anti-inflammatory, antioxidant and improve cardiovascular condition as well as sun's damaging effects. However, there have been rare reports of various beneficial effects of grape fruit stem extract (GFSE), one of the waste products of grapes. We investigated anti-inflammatory and melanogenesis inhibitory effects of GFSE. Methods : One-hundred gram of grape fruit stem was extracted with 80% ethanol at room temperature for 3 days. After filtration, the ethanol was removed using vacuum evaporator, then lyophilized to obtain the dry extract which was stored at $-20^{\circ}C$ until used. NO levels were measured by using Greiss reagent. Prostaglandin $E_2$ ($PGE_2$) production was measured by ELISA assay. The expression levels of iNOS, COX-2, TRP-1 and TRP-2 were evaluated by western blot analysis. Results : GFSE reduced the level of nitric oxide and prostaglandin $E_2$ ($PGE_2$) production in a dose-dependent manner, compared to control. Expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein were also effectively inhibited by the GFSE. In a tyrosinase inhibitory activity, GFSE significantly reduced the tyrosinase activity and melanin content in a dose dependent manner, compared to control. GFSE also decreased the expression of tyrosinase related protein-1 (TRP-1) and tyrosinase related protein-2 (TRP-2), known as a melanocyte-specific gene product involved in melanin synthesis. Conclusions : Therefore, these results indicated that GFSE had powerful anti-inflammatory and anti-melanogenic effects.

The effect of Panax notoginseng saponins on oxidative stress induced by PCV2 infection in immune cells: in vitro and in vivo studies

  • Wang, Qiu-Hua;Kuang, Na;Hu, Wen-yue;Yin, Dan;Wei, Ying-Yi;Hu, Ting-Jun
    • Journal of Veterinary Science
    • /
    • v.21 no.4
    • /
    • pp.61.1-61.16
    • /
    • 2020
  • Background: Panax notoginseng saponins (PNS) are bioactive substances extracted from P. notoginseng that are widely used to treat cardiovascular and cerebrovascular diseases and interstitial diseases. PNS have the functions of scavenging free radicals, anti-inflammation, improving blood supply for tissue and so on. Objectives: The aim of this study was to investigate the effects of PNS on the oxidative stress of immune cells induced by porcine circovirus 2 (PCV2) infection in vitro and in vivo. Methods: Using an oxidative stress model of PCV2 infection in a porcine lung cell line (3D4/2 cells) and mice, the levels of nitric oxide (NO), reactive oxygen species (ROS), total glutathione (T-GSH), reduced glutathione (GSH), and oxidized glutathione (GSSG) and the activities of xanthine oxidase (XOD), myeloperoxidase (MPO) and inducible nitric oxide synthetase (iNOS) were determined to evaluate the regulatory effects of PNS on oxidative stress. Results: PNS treatment significantly reduced the levels of NO and ROS, the content of GSSG and the activities of XOD, MPO, and iNOS (p < 0.05), while significantly increasing GSH and the ratio of GSH/GSSG in infected 3D4/2 cells (p < 0.05).Similarly, in the in vivo study, PNS treatment significantly decreased the level of ROS in spleen lymphocytes of infected mice (p < 0.05), increased the levels of GSH and T-GSH (p < 0.05), significantly decreased the GSSG level (p < 0.05), and decreased the activities of XOD, MPO, and iNOS. Conclusions: PNS could regulate the oxidative stress of immune cells induced by PCV2 infection in vitro and in vivo.

Chondroprotective Effects of a 30% Ethanol Extract of Sargassum fulvellum (모자반(Sargassum fulvellum) 주정 30% 추출물의 In Vitro에서의 연골 보호효과)

  • Jang, Goeun;Han, Seul Hee;Kim, Do Kyung;Kim, Chun Sung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.6
    • /
    • pp.867-874
    • /
    • 2022
  • Osteoarthritis (OA) is an inflammatory disease due to wear caused by the continuous use of cartilage. Although many drugs for treating OA are being studied, they have side effects, such as digestive disorders and cardiovascular diseases. Glucosamine, a drug derived from natural products, is known to be less effective. Therefore, the marine organism, Sargassum fulvellum, was studied to determine whether it contains substances with a chondroprotective effect on the inflammatory response of chondrocytes induced by interleukin-1β (IL-1β). A 30% ethanol extract of S. fulvellum (SF30%EtOH) has therapeutic and few side effects. We first confirmed the presence of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), which is expressed during inflammatory reactions. We then examined the expression of collagen type II, which is the main component of the extracellular matrix and cartilage. Finally, the expression of extracellular matrix degrading enzymes, MMPs and ADAMTS-4 and -5, was confirmed. The results showed that SF30%EtOH reduced the expression levels of NO, iNOS, MMPs, and ADAMT-4 and -5, and increased the expression level of collagen type II in chondrocytes induced with IL-1β. Therefore, SF30%EtOH has a chondroprotective effect against inflammation, indicating its potential use for the prevention and treatment of OA.

Anti-inflammatory Activity of Cynanchi Atrati Radix Et Rhizoma Water Extracts via Regulation of MAPK in LPS-induced Murine Macrophage Cell Line, RAW 264.7 (LPS로 유도된 마우스 대식세포주인 RAW264.7에서 MAPK 조절에 의한 백미 물추출물의 항염증 활성)

  • Lee, Sang-Ho;Yoo, Ji-Hyun;Kil, Ki-Jung
    • The Korea Journal of Herbology
    • /
    • v.37 no.6
    • /
    • pp.19-28
    • /
    • 2022
  • Objectives : To develop natural ingredients that help prevent or treat anti-inflammatory-related diseases and use themas basic data, we investigated anti-inflammatory activity of Cynanchi Atrati Radix Et Rhizoma water extracts(CWE) in lipopolysaccharide(LPS)-induced murine macrophage cell line, RAW 264.7 cells. Methods : The cell viabilities were evaluated with RAW 264.7 cells. The production of nitric oxide(NO), prostaglandin E2(PGE2), pro-inflammatory cytokines such tumor necrotic factor(TNF)-α and interleukin(IL)-6 were assessed in LPS-induced RAW 264.7 cell treated with CWE. Furthermore, the protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2(COX-2), and mitogen-activated protein kinase(MAPK) were assessed by western blotting. Results : In RAW 264.7 cell, the cell viability by CWE treatment was more than 98.4% at a concentration of 100-400 ㎍/mL. At a concentration of 800 ug/ml of CWE, the cell viability was as low as 86%. At doses of 100, 200 and 400 ㎍/mL, CWE inhibited the production of NO, PGE2, TNF-𝛼 and IL-6 in a dose-dependent manner and also decreased the expression of iNOS and COX-2 from LPS-induced RAW 264.7 cells. In addition, CWE significantly inhibited the MAPK pathway including decreased the phosphorylation of the p38, c-Jun N-terminal kinase(JNK) and extracellular signal-regulated kinase(ERK1/2). Conclusions : Our study provides evidence that CWE inhibits the production of main pro-inflammatory molecules in LPS-induced RAW 264.7 cells via expression of p38, JNK, and ERK1/2 MAPK signaling pathways. Therefore, CWE is expected to be widely used as a natural ingredient for anti-inflammatory functional foods or pharmaceuticals in the future.

Anti-inflammatory Effect of Bodusan (보두산(寶豆散) 메탄올 추출물의 항염증 효과)

  • Kim, Pan-Joon;Yun, Hyun-Jeong;Heo, Sook-Kyoung;Kim, Kyoung-Ae;Kim, Dong-Wan;Kim, Jae-Eun;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.24 no.2
    • /
    • pp.49-56
    • /
    • 2009
  • Objectives : Inflammation is important event in the development of vascular diseases including hypertension, atherosclerosis, and restenosis. Bodusan (BDS) was a traditional Korean herbal medicine and widely used in treatment of gastrointestinal complaint and stomach ulcer. The aim of this study was to determine whether BDS and its components inhibit production of nitrite, PGE2 and proinflammatory cytokines in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. Methods : Cytotoxic activity of BDS and its components on RAW 264.7 cells was using 5-(3caroboxymcrophages. eth-oxyphenyj)-2H-tetra-zolium inner salt (MTS) assay. The nitric oxide (NO) production was measured by Griess reagent system. And proinflammatory cytokines were measured by ELISA kit. The levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression were detected by western blot. Results : Our results indicated that BDS and its components significantly inhibited the LPS-induced NO and PGE2 production. Moreover. BDS and its components inhibited iNOS and COX-2 expression accompanied by an attenuation of TNF-${\alpha}$, IL-11${\beta}$, IL-6 and MCP-1 formation in macrophages. Conclusions: These results indicate that BDS and its components have potential as an anti-inflammatory agent.

6-Shogaol and 10-Shogaol Synergize Curcumin in Ameliorating Proinflammatory Mediators via the Modulation of TLR4/TRAF6/MAPK and NFκB Translocation

  • Xian Zhou;Ahmad Al-Khazaleh;Sualiha Afzal;Ming-Hui (Tim) Kao;Gerald Munch;Hans Wohlmuth;David Leach;Mitchell Low;Chun Guang Li
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.27-39
    • /
    • 2023
  • Extensive research supported the therapeutic potential of curcumin, a naturally occurring compound, as a promising cytokine-suppressive anti-inflammatory drug. This study aimed to investigate the synergistic anti-inflammatory and anti-cytokine activities by combining 6-shogaol and 10-shogaol to curcumin, and associated mechanisms in modulating lipopolysaccharides and interferon-γ-induced proinflammatory signaling pathways. Our results showed that the combination of 6-shogaol-10-shogaolcurcumin synergistically reduced the production of nitric oxide, inducible nitric oxide synthase, tumor necrosis factor and interlukin-6 in lipopolysaccharides and interferon-γ-induced RAW 264.7 and THP-1 cells assessed by the combination index model. 6-shogaol-10-shogaol-curcumin also showed greater inhibition of cytokine profiling compared to that of 6-shogaol-10-shogaol or curcumin alone. The synergistic anti-inflammatory activity was associated with supressed NFκB translocation and downregulated TLR4-TRAF6-MAPK signaling pathway. In addition, SC also inhibited microRNA-155 expression which may be relevant to the inhibited NFκB translocation. Although 6-shogaol-10-shogaol-curcumin synergistically increased Nrf2 activity, the anti-inflammatory mechanism appeared to be independent from the induction of Nrf2. 6-shogaol-10-shogaol-curcumin provides a more potent therapeutic agent than curcumin alone in synergistically inhibiting lipopolysaccharides and interferon-γ induced proinflammatory mediators and cytokine array in macrophages. The action was mediated by the downregulation of TLR4/TRAF6/MAPK pathway and NFκB translocation.

Evaluation of the Effects of Euglena gracilis on Enhancing Immune Responses in RAW264.7 Cells and a Cyclophosphamide-Induced Mouse Model

  • Kyeong Ah Jo;Kyeong Jin Kim;Soo-yeon Park;Jin-Young Jeon;Ji Eun Hwang;Ji Yeon Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.493-499
    • /
    • 2023
  • In this study we evaluated the immune-enhancing effects of β-glucan, the main component of Euglena gracilis (Euglena), and Euglena on inflammatory factor expression in RAW264.7 macrophages and ICR mice with cyclophosphamide-induced immunosuppression. Macrophages were treated with β-glucan or Euglena for 48 h. The β-glucan and Euglena groups exhibited higher levels of inducible nitric oxide synthase, nitric oxide, and tumor necrosis factor (TNF)-α than the control (vehicle alone) group. Animals were fed saline and β-glucan (400 mg/kg body weight (B.W.)) or Euglena (400 or 800 mg/kg B.W.) for 19 days, and on days 17-19, cyclophosphamide (CCP, 80 mg/kg B.W.) was administered to induce immunosuppression in the ICR mouse model. CCP reduced the body weight, spleen index, and cytokine expression of the mice. To measure cytokine and receptor expression, splenocytes were treated with concanavalin A (ConA) or lipopolysaccharide (LPS) as a mitogen for 24 h. In vivo, ConA stimulation significantly upregulated the expression of interferon (IFN)-γ, interleukin (IL)-10, IL-12 receptor β1, IL-1β, and IL-2 in splenocytes from the β-glucan- or Euglena-treated groups compared with those in the splenocytes from the CCP-treated group; LPS stimulation increased the levels of the cytokines TNF-α, IL-1β, and IL-6 in splenocytes from the β-glucan- or Euglena- treated groups compared with those from the CCP-treated group, but most of these differences were not significant. These results demonstrate the effect of Euglena in ameliorating macrophages and immunosuppression in CCP-treated mice. Thus, Euglena has the potential to enhance macrophage- and splenocyte- mediated immune-stimulating responses.

7α,25-Dihydroxycholesterol-Induced Oxiapoptophagic Chondrocyte Death via the Modulation of p53-Akt-mTOR Axis in Osteoarthritis Pathogenesis

  • Jeong-Yeon Seo;Tae-Hyeon Kim;Kyeong-Rok Kang;HyangI Lim;Moon-Chang Choi;Do Kyung Kim;Hong Sung Chun;Heung-Joong Kim;Sun-Kyoung Yu;Jae-Sung Kim
    • Molecules and Cells
    • /
    • v.46 no.4
    • /
    • pp.245-255
    • /
    • 2023
  • This study aimed to exploring the pathophysiological mechanism of 7α,25-dihydroxycholesterol (7α,25-DHC) in osteoarthritis (OA) pathogenesis. 7α,25-DHC accelerated the proteoglycan loss in ex vivo organ-cultured articular cartilage explant. It was mediated by the decreasing extracellular matrix major components, including aggrecan and type II collagen, and the increasing expression and activation of degenerative enzymes, including matrix metalloproteinase (MMP)-3 and -13, in chondrocytes cultured with 7α,25-DHC. Furthermore, 7α,25-DHC promoted caspase-dependent chondrocyte death via extrinsic and intrinsic pathways of apoptosis. Moreover, 7α,25-DHC upregulated the expression of inflammatory factors, including inducible nitric oxide synthase, cyclooxygenase-2, nitric oxide, and prostaglandin E2, via the production of reactive oxygen species via increase of oxidative stress in chondrocytes. In addition, 7α,25-DHC upregulated the expression of autophagy biomarkers, including beclin-1 and microtubule-associated protein 1A/1B-light chain 3 via the modulation of p53-Akt-mTOR axis in chondrocytes. The expression of CYP7B1, caspase-3, and beclin-1 was elevated in the degenerative articular cartilage of mouse knee joint with OA. Taken together, our findings suggest that 7α,25-DHC is a pathophysiological risk factor of OA pathogenesis that is mediated a chondrocyte death via oxiapoptophagy, which is a mixed mode of apoptosis, oxidative stress, and autophagy.