• Title/Summary/Keyword: Inducible nitric oxide

Search Result 1,202, Processing Time 0.031 seconds

Anti-Inflammatory Effects of Shiitake Mushroom and Kelp Mixture Extracts in RAW264.7 Cell (RAW264.7 대식세포에서 표고버섯과 다시마 혼합 추출액의 항염증 효과)

  • Soo Bong Kim;Soon Ah Kang
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.6
    • /
    • pp.535-542
    • /
    • 2023
  • We investigated the anti-inflammatory effects of shiitake mushroom and kelp (SMK) mixture extracts in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 cells. Treatment of RAW 264.7 cells with LPS significantly increased NO (nitric oxide) production, pro-inflammatory cytokines (tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-6, and IL-1β), and inflammation-related genes (COX-2 and inducible nitric oxide synthase (iNOS)). In cytotoxicity testing using RAW 264.7 cells, SMK mixture extracts in the range of 1-16 ㎍/mL did not inhibit cell proliferation. However, SMK mixture extracts significantly inhibited NO production in a dose-dependent manner (p<0.05). SMK treatment significantly decreased TNF-α, IL-6, IFN-γ, and IL-1β levels compared to the LPS group, and similarly, pro-inflammatory cytokine mRNA levels also decreased. SMK mixture extracts reduced the mRNA expression of COX-2 and iNOS in RAW 264.7 cells compared to LPS (p<0.05). The above results show that SMK mixture extracts suppressed the inflammatory response induced by LPS. In particular, the extracts were shown to regulate the inflammatory response by suppressing the expression of inflammatory cytokines and inflammation-related enzymes.

Anti-inflammatory effect of ganodermanondiol from Ganoderma lucidumon RAW 264.7 cells (영지 유래 가노더마논디올의 RAW 264.7 세포주에 대한 항염 효과)

  • Che-Hwon Park;Ju-Hyeon Shin;Young-Jin Park
    • Journal of Mushroom
    • /
    • v.21 no.4
    • /
    • pp.215-221
    • /
    • 2023
  • Owing to its diverse range of bioactive compounds, Ganoderma lucidumhas garnered significant research attention for health promotion and disease prevention. Ganodermanondiol, which has a triterpenoid structure, is one of the major active compounds of G. lucidum. In the present study, the anti-inflammatory effects of ganodermanondiol were investigated to evaluate its usefulness as a functional ingredient. Ganodermanondiol (0.5-2 ㎍/mL) significantly inhibited the production of nitric oxide (NO), the expression of the cytokines tumor necrosis factor (TNF)??and interleukin 6 (IL-6), and the expression of cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) in lipopolysaccharide-induced RAW 264.7 (murine macrophage) cells. Ganodermanondiol (0.5-2 ㎍/mL) also inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) signal molecules, including p38 and c-Jun N-terminal protein kinase (JNK) in RAW 264.7 cells. Ganodermanondiol significantly inhibited the essential factors involved in the inflammatory responses of RAW 264.7 cells and would, therefore, serve as a potential prophylactic and therapeutic agent for immune-related diseases.

Immunomodulatory effects of six Acetobacter pasteurianus strains in RAW-Blue macrophage

  • Sun Hee Kim;Woo Soo Jeong;So-Young Kim;Soo-Hwan Yeo
    • Food Science and Preservation
    • /
    • v.30 no.1
    • /
    • pp.65-77
    • /
    • 2023
  • In this study, we investigated the immunological properties of six strains of Acetobacter pasteurianus through nuclear factor-kappa B/activator protein-1 (NF-κB/AP-1) transcription factor activation and nitric oxide (NO) and cytokine production in macrophages. We found that the six A. pasteurianus strains had no significant inhibitory effect on the cell viability of RAW-BlueTM cells at the concentration of (25, 50, 100 CFU/macrophage). The production of NO and cytokines (TNF-α, IL-1β, and IL-6) showed different abilities of immune activation for each strain, and it was 0.7 to 0.9 times higher than that of the LPS (100 ng/mL, v/v) positive control and 7 to 8 times superior to that of the negative control group. To explore the underlying mechanism, we evaluated the mRNA expression of pro-inflammatory genes. Consequently, we found that inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expression including genes expression of cytokines were elevated by the six A. pasteurianus treatment. These results suggested that the six strains of A. pasteurianus have an excellent industrial application value as a functional material for the purpose of enhancing immune function.

UHPLC/TOFHRMS analysis and anti-inflammatory effect of leaf extracts from Zizyphus jujuba in LPS-stimulated RAW264.7 cells

  • Hyun Ji Eo;Sun-Young Lee;Gwang Hun Park
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.27-33
    • /
    • 2023
  • Zizyphus jujube is a plant in the buckthorn family (Rhamnaceae) that has been the subject of research into antibacterial, antifungal and anti-inflammatory properties of its fruit and seed. However, few studies have investigated its leaves. In this study, the anti-inflammatory activity of ZJL (an extract of Z. jujube leaf) was evaluated to verify its potential as an anti-inflammatory agent and SARS-CoV-2 medicine, using nitric oxide (NO) assay, RT-PCR, SDSPAGE, Western blotting, and UHPLC/TOFHRMS analysis. We found that ZJL suppresed pro-inflammatory mediators such as NO, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor α (TNF-α) in lipopolysaccharide (LPS)-induced RAW264.7 cells. ZJL acted by inhibiting NF-KB and MAPK signaling pathway activity. We also confirmed that ZJL contains a phenol compound and flavonoids with anti-inflammatory activity such as trehalose, maleate, epigallocatechin, hyperoside, catechin, 3-O-coumaroylquinic acid, rhoifolin, gossypin, kaempferol 3-neohesperidoside, rutin, myricitrin, guaiaverin, quercitrin, quercetin, ursolic acid, and pheophorbide a. These findings suggest that ZJL may have great potential for the development of anti-inflammatory drugs and vaccines via inhibition of NF-κB and MAPK signaling in LPS-induced RAW264.7 cells.

Anti-Inflammatory Effect of Freeze-Dried Broccoli Sprout Powder with Antioxidant Activity in RAW264.7 Cells

  • Hyun Jung Lim;Jong Soon Choi
    • Journal of the Korean Society of Food Culture
    • /
    • v.39 no.3
    • /
    • pp.156-165
    • /
    • 2024
  • Sprout products, such as broccoli, alfalfa, and cabbage, have positive health effects. Thus far, sprout foods have attracted attention owing to their good bioavailability. In particular, young broccoli sprouts exhibit anti-inflammatory, antioxidant, and anti-cancer effects. They contain 100 times more chemoprotective substances than adult broccoli. This study examined the anti-inflammatory effects of freeze-dried young sprout broccoli (FD-YB) in vitro using RAW264.7 macrophage cells. The FD-YB powder antioxidant ability test showed that the radical-scavenging activity and superoxide dismutase enzyme activity increased in a dose-dependent manner. In addition, FD-YB was not cytotoxic to RAW264.7 cells, and nitric oxide production decreased after the FD-YB treatment of lipopolysaccharide-stimulated RAW264.7 cells in a dose-dependent manner. Furthermore, FD-YB significantly decreased the expression of inflammation-related proteins (Cyclooxygenase-2, Inducible nitric oxide synthase, and Prostaglandin E Synthase 2) and cytokines (Tumor necrosis factor-α and Interleukin-6). In conclusion, FD-YB can be a potential nutraceutical for preventing and regulating excessive immune responses during inflammation.

Anti-Inflammatory Activity of Vacuum Distillate from Panax ginseng Root on LPS-Induced RAW264.7 Cells

  • Chanwoo Lee;Seul Lee;Young Pyo Jang;Junseong Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.262-269
    • /
    • 2024
  • Panax ginseng has been widely applied as an important herb in traditional medicine to treat numerous human disorders. However, the inflammatory regulation effect of P. ginseng distillate (GSD) has not yet been fully assessed. To determine whether GSD can ameliorate inflammatory processes, a GSD was prepared using the vacuum distillation process for the first time, and the regulation effect on lipopolysaccharide-induced macrophages was assessed. The results showed that GSD effectively inhibited nitric oxide (NO) formation and activation of inducible nitric oxide synthase (iNOS) mRNA in murine macrophage cell, but not cyclooxygenase-2 production. The mRNA expression pattern of tumor necrosis factor alpha and IL-6 were also reduced by GSD. Furthermore, we confirmed that GSD exerted its anti-inflammatory effects by downregulating c-Jun NH2-terminal kinase (JNK) phosphorylation, the extracellular signal-regulated kinase phosphorylation, and signaling pathway of nuclear factor kappa B (NF-κB). Our findings revealed that the inflammatory regulation activity of GSD could be induced by iNOS and NO formation inhibition mediated by regulation of nuclear factor kappa B and p38/JNK MAPK pathways.

Effect of Nicotinamide on Proliferation, Differentiation, and Energy Metabolism in Bovine Preadipocytes

  • Liu, Xiaomu;Fu, Jinlian;Song, Enliang;Zang, Kun;Wan, Fachun;Wu, Naike;Wang, Aiguo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.9
    • /
    • pp.1320-1327
    • /
    • 2009
  • This study examined the effects of nicotinamide on proliferation, differentiation, and energy metabolism in a primary culture of bovine adipocytes. After treatment of cells with 100-500 $\mu{M}$ nicotinamide, cell growth was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and cellular lipid content was assessed by Oil Red O staining and a triglyceride (TG) assay. Several factors related to energy metabolism, namely adenosine triphosphatase (ATPase) activity, nitric oxide (NO) content, nitric oxide synthase (NOS) activity, the number of mitochondria and the relative expression of glyceraldehydes-3-phosphate dehydrogenase (GAPDH), peroxisome proliferator-activated receptor-$\gamma$ ($PPAR_{\gamma}$) and inducible NOS (iNOS), were also investigated. Results showed that nicotinamide induced both proliferation and differentiation in bovine preadipocytes. Nicotinamide decreased NO production by inhibiting NOS activity and iNOS mRNA expression, and controlled lipolytic activity by increasing ATPase activity and the number of mitochondria. The present study provides further evidence of the effects of nicotinamide on lipid and energy metabolism, and suggests that nicotinamide may play an important role in the development of bovine adipose tissue in vivo. This emphasizes the importance of investigating bovine adipose tissue to improve our understanding of dairy cow physiology.

Anti-inflammatory effects of the fermentation extracts consisting of soybean, red ginseng and Citrus Unshiu Peel (대두, 홍삼, 진피로 구성된 발효 추출물의 항염증 효능에 관한 연구)

  • Lee, Jong Rok;Kim, Young Woo;Byun, Sung Hui;Kim, Sang Chan;Park, Sook Jahr
    • The Korea Journal of Herbology
    • /
    • v.30 no.5
    • /
    • pp.59-65
    • /
    • 2015
  • Objectives : Fermentation of herbs has been known to be helpful in improving the immune systems and protecting body against disease. The present study was conducted to evaluate anti-inflammatory effects of the fermentation extracts (FE) consisting of soybean, red ginseng andCitrus UnshiuPeel in lipopolysaccharide (LPS)-activated Raw264.7 cells.Methods : FE were prepared by the fermentation withBacillus Subtilisand then by extraction with ethanol (95%; prepared by the fermentation process). Cell viability was measured by MTT assay. Nitric oxide (NO) production was measured in culture media by Griess assay. The expression of nuclear factor (NF)-κB and inhibitory kappa B alpha (IκBα) was determined by Western blot.Results : LPS-induced production of NO and PGE2was dose-dependently decreased by the treatment of FE in Raw264.7 cells. These suppressive effects of FE on NO and PGE2production were related to the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. FE inhibited LPS-induced production of pro-inflammatory cytokines, TNF-α, IL-6, and IL-1βin a dose-dependent manner. Furthermore, FE inhibited the NF-κB signaling pathway through the prevention of LPS-induced degradation of IκBαin cytosol and the nuclear translocation of NF-κB.Conclusions : These findings suggest that FE could have anti-inflammatory effects on LPS-induced inflammatory responses in macrophages.

Inhibition of iNOS Expression Via Ursodeoxycholic Acid in Murine Microglial Cell, BV-2 Cell Line (생쥐 소교세포(BV-2)에서 우르소데옥시콜린산에 의한 iNOS 발현억제)

  • Joo, Seong-Soo;Won, Tae-Joon;Hwang, Kwang-Woo;Lee, Do-Ik
    • IMMUNE NETWORK
    • /
    • v.5 no.1
    • /
    • pp.45-49
    • /
    • 2005
  • Background: Inflammation in the brain has known to be associated with the development of a various neurological diseases. The hallmark of neuro-inflammation is the activation of microglia, brain macrophage. Pro-inflammatory compounds including nitric oxide (NO) are the main cause of neuro-degenerative disease such as Alzheimer's disease (AD) which is resulted in cell death. Among those pro-inflammatory compounds, NO contributes to the cell death by directly or indirectly. Methods: In the study, we examined whether ursodeoxycholic acid (UDCA), a non-toxic hydrophilic bile acid, inhibits the NO production by a direct method using Griess reagent and by RT-PCR in the gene expression of inducible nitric oxide synthase (iNOS). In signal transduction, we also examined the NF-${\kappa}B$ (p65/p50), IKK, and I ${\kappa}B$, which are associated with the expression of iNOS gene using western blots. Results: In the present study, we found that UDCA effectively inhibited NO production in BV-2 microglial cell, and NF-${\kappa}B$ activation was reduced by suppressing IKK gene expression and by increasing the I${\kappa}B$ in cytosol comparing those to the positive control LPS. Conclusion: Taken together, these data suggested that UDCA may playa crucial role in inhibiting the NO production and the results imply that UDCA suppresses a cue signal of the microglial activation via stimulators, such as ${\beta}$-amyloid peptides which are known to stimulate microglia in AD pathogenesis.

Hexane Fraction of Zingiberis Rhizoma Crudus Extract Inhibits the Production of Nitric Oxide and Pro-inflammatory Cytokines in LPS-stimulated BV2 Microglial Cells (뇌신경소교세포(腦神經小膠細胞)에서 생강 헥산 분획물의 염증매개물질 생성(生成) 억제효과(抑制效果))

  • Jung, Hwan-Yong;Joo, Ye-Jin;Jung, Hye-Mi;Shin, Woo-Jin;Seo, Un-Kyo
    • The Journal of Korean Medicine
    • /
    • v.30 no.2
    • /
    • pp.17-29
    • /
    • 2009
  • Objectives: The present study is focused on the inhibitory effect of the rhizome hexane fraction extract of Zingiberis Rhizoma Crudus (ginger hexan extract; GHE) on the production of inflammatory mediators such as NO, $PGE_2$, and proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated BV2 cells, a mouse microglial cell line. Methods: We separated the hexane fraction from Zingiberis Rhizoma Crudus's methanol extract. The inhibitory and anti-inflammatory effect of GHE was examined on microglial activation. Results: GHE significantly inhibited the excessive production of NO, $PGE_2$, TNF-${\alpha}$, and IL-1${\beta}$ in LPS-stimulated BV2 cells. In addition, GHE attenuated the mRNA expressions and protein levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and proinflammatory cytokines. Conclusion: The anti-inflammatory properties of GHE may make it useful as a therapeutic candidate for the treatment of human neurodegenerative diseases.

  • PDF