• Title/Summary/Keyword: Inducible nitric oxide

Search Result 1,202, Processing Time 0.03 seconds

Anti-Inflammatory Effects of Chrysanthemum indicum Water Extract in RAW 264.7 Cell as a Whole Plant

  • Kang, Kyoungah
    • Journal of Korean Biological Nursing Science
    • /
    • v.17 no.4
    • /
    • pp.341-347
    • /
    • 2015
  • Purpose: Chrysanthemum indicum (CHI) has been used for edible and medical purposes for a long time in Korea. The purpose of this study was to evaluate the anti-inflammatory effects of CHI water extract in lipopolysaccharides (LPS)-induced RAW 264.7 macrophage cells. Methods: To investigate the anti-inflammatory effects on LPS-induced RAW 264.7 macrophage cells, CHI extract as a whole plant was used in this study. RAW 264.7 cells were treated with various concentrations of CHI extract (1, 10, and $100{\mu}g/mL$). After that Nitric Oxide (NO), inducible nitric oxide synthase (iNOS), interleukin (IL)-$1{\beta}$, cyclooxygenase (COX)-2 and prostaglandin $E_2$ ($PGE_2$) expression level were measured. Results: CHI extract significantly suppressed the LPS-induced NO production and decreased the level of iNOS, IL-$1{\beta}$, COX-2 messenger ribonucleic acid (mRNA) expression and also the down regulation of $PGE_2$ expression in a dose-dependent manner. Conclusion: The present study suggested that CHI extract can be substituted for anti-inflammatory drugs and provide a safe and effective non pharmacological therapeutic approach.

Suppressive effects of pinosylvin on prostaglandin E$_2$and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 cells

  • Park, Eun-Jung;Min, Hye-Young;Kim, Moon-Sun;Pyee, Jae-Ho;Ahn, Yong-Hyun;Lee, Sang-Kook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.102-102
    • /
    • 2003
  • The inhibitors of prostaglandin biosynthesis and nitric oxide production by corresponding inducible isozyme have been considered as potential anti-inflammatory and cancer chemopreventive agents. In our continuous search for cancer chemopreventive agents from natural products, we have evaluated the inhibitory potential of PGE$_2$and NO production in lipopolysaccharide (LPS)-induced mouse macrophage RAW264.7 cells. As a result, pinosylvin (3,5-dihydroxy-trans-stilbene), a stilbenoid, mainly found from the heartwood and leaves of the Pinus sylvestris, showed potential inhibitory activity of LPS-induced PGE$_2$and NO production in a dose-dependent manner. Pinosylvin also suppressed the LPS-induced iNOS protein expression. Further study revealed that pinosylvin exhibited antioxidant activity by the DPPH free radical scavenging potential and inhibitory effect of xanthine oxidase activity. In addition, pinosylvin inhibited COX -2 overexpressed human colon cancer cell (HT-29) growth in a time- and dose-dependent manner. These findings suggest that pinosylvin might be a promising candidate for developing cancer chemopreventive agent.

  • PDF

Inhibitory Effect of Taraxacum mongolicums (蒲公英) on NO Production in LPS-stimulated Macrophages (LPS로 자극된 대식세포에서 포공영의 NO 생성 억제 효과)

  • Ha, Hyeon-Hee;Park, Sun-Young;Ko, Woo-Shin;Jang, Jeong-Su;Kim, Young-Hee
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.20 no.3
    • /
    • pp.98-106
    • /
    • 2007
  • 포공영(蒲公英)은 예로부터 청열해독약(淸熱解毒藥)으로 사용되어 왔으며 NO가 염증의 한 요인이기 때문에 포공영의 항염증 작용기작을 밝히기 위하여 LPS로 자극된 대식세포주 RAW264.7 세포에서 포공영 열수 추출물 (AETM)의 NO 생성에 미치는 효과를 조사하였다. 포공영은 NO 생성 및 iNOS 단백질 발현, iNOS mRNA 발현을 저해하였으며, 전사인자인 $NF-kB$의 핵으로의 이동을 억제하였다. 또한 LPS에 의해서 활성화되는 ERK/MAPK 효소의 활성을 현저히 억제하였다. 이 결과들로 보아 포공영의 항염증 작용이 ERK/MAPK 활성 저해 및 $NF-kB$ 활성 저해로 인한 iNOS 발현의 억제 때문인 것으로 사료된다.

  • PDF

Tangeretin Improves Glucose Uptake in a Coculture of Hypertrophic Adipocytes and Macrophages by Attenuating Inflammatory Changes

  • Shin, Hye-Sun;Kang, Seong-Il;Ko, Hee-Chul;Park, Deok-bae;Kim, Se-Jae
    • Development and Reproduction
    • /
    • v.21 no.1
    • /
    • pp.93-100
    • /
    • 2017
  • Obesity is characterized by a state of chronic low-grade inflammation and insulin resistance, which are aggravated by the interaction between hypertrophic adipocytes and macrophages. In this study, we investigated the effects of tangeretin on inflammatory changes and glucose uptake in a coculture of hypertrophic adipocytes and macrophages. Tangeretin decreased nitric oxide production and the expression of interleukin (IL)-6, $IL-1{\beta}$, tumor necrosis $factor-{\alpha}$, inducible nitric oxide synthase, and cyclooxygenase-2 in a coculture of 3T3-L1 adipocytes and RAW 264.7 cells. Tangeretin also increased glucose uptake in the coculture system, but did not affect the phosphorylation of insulin receptor substrate (IRS) and Akt. These results suggest that tangeretin improves insulin resistance by attenuating obesity-induced inflammation in adipose tissue.

Effect of Baechu Kimchi Added Ecklonia cava Extracts on High Glucose-induced Oxidative Stress in Human Umbilical Vein Endothelial Cells

  • Lee, Hyun-Ah;Song, Yeong-Ok;Jang, Mi-Soon;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.3
    • /
    • pp.170-177
    • /
    • 2014
  • Endothelial cell dysfunction is considered to be a major cause of vascular complications in diabetes. In the present study, we investigated the protective effect of a baechu kimchi added Ecklonia cava extract (BKE) against high glucose induced oxidative damage in human umbilical vein endothelial cells (HUVECs). Treatment with a high concentration of glucose (30 mM) induced cytotoxicity, whereas treatment with BKE protected HUVECs from high glucose induced damage; by restoring cell viability. In addition, BKE reduced lipid peroxidation, intracellular reactive oxygen species and nitric oxide levels in a dose dependent manner. Treatment with high glucose concentrations also induced the overexpression of inducible nitric oxide synthase, cyclooxygenase-2 and NF-${\kappa}B$ proteins in HUVECs, but BKE treatment significantly reduced the overexpression of these proteins. These findings indicate that BKE may be a valuable treatment against high glucose-induced oxidative stress HUVECs.

Mixture of Wild Panax Ginseng and Red-Mold Rice Extracts Activates Macrophages through Protection of Cell Regression and Cytokine Expression in Methotrexate-Treated RAW264.7 Cells

  • Shin, Heung-Mook
    • The Journal of Korean Medicine
    • /
    • v.30 no.6
    • /
    • pp.69-79
    • /
    • 2009
  • Objective: In this study, the immunomodulatory activity of a mixture of wild Panax ginseng and red-mold rice extracts (MPR) on RAW 264.7 macrophage cells in the presence and absence of methotrexate (MTX), an anti-cancer drug, was investigated. Methods and Results: In the cell viability, MPR showed a significant cell proliferation and inhibited cell regression by red-mold rice (RMR) alone or MTX alone. MPR induced moderate increase in nitric oxide (NO) production. NO production and inducible nitric oxide synthase (iNOS) mRNA expression by LPS decreased after MPR treatment. In addition, MPR slightly induced COX-2 mRNA expression, but it did not affect the expression of COX-2 mRNA by LPS treatment. In RT-PCR analyses, MPR induced IL-$1{\alpha}$, IL-$1{\beta}$, IL-6, and TNF-$\alpha$ mRNA expression, but had no effect on IL-10 and TGF-$\beta$, regardless of MTX treatment. Furthermore, MPR did not interfere with the cytotoxicity of MTX against MCF-7 human breast carcinoma cells. Conclusions: MPR is efficacious in protecting against MTX-induced cell regression as a result of macrophage activation, resulting in induction of cytokine expression, implying that MPR could be considered an adjuvant in MTX-chemotherapy.

  • PDF

Anti-oxidative and anti-inflammatory effects of aerial parts of Rumex japonicus Houtt. in RAW 264.7 cells (양제엽(羊蹄葉) 메탄올 추출물의 항산화 및 항염증 효과)

  • Cho, Hyun-Jin;Yun, Hyun-Jeong;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.26 no.1
    • /
    • pp.87-96
    • /
    • 2011
  • Objectives : The aerial parts of Rumex japonicus Houtt. (RF) is used by traditional clinics to treat parasite infection in East asia. This study aims a verification of anti-oxidative and anti-inflammatory effects of RF methanol extract. Methods : Anti-oxidative effects of RF were measured by scavenging activities of DPPH, superoxide, nitric oxide (NO) and peroxynitrite radicals. And also scavenging activities of anti-oxidation in lipopolysaccharide (LPS)-treated RAW 264.7 cells were measured. The inhibitory effects against the production of inflammatory mediators including NO, prostaglandin $E_2$ ($PGE_2$), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), IL-6, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and the translocation of nuclear factor (NF)-${\kappa}B$ in LPS-stimulated RAW 264.7 cells by RF were tested. Results : RF scavenged DPPH, superoxide, NO and peroxynitrite radicals, and RF (at $200{\mu}g/m{\ell}$) reduced the inflammatory mediators definitely. Conclusions : These results indicate that RF may be a potential drug source for oxidative stress related inflammatory diseases.

Endotoxin-induced renal tolerance against ischemia and reperfusion injury is removed by iNOS, but not eNOS, gene-deletion

  • Kim, Jee-In;Jang, Hee-Seong;Park, Kwon-Moo
    • BMB Reports
    • /
    • v.43 no.9
    • /
    • pp.629-634
    • /
    • 2010
  • Endotoxin including lipopolysaccharide (LPS) confers organ tolerance against subsequent challenge by ischemia and reperfusion (I/R) insult. The mechanisms underlying this powerful adaptive defense remain to be defined. Therefore, in this study we attempted to determine whether nitric oxide (NO) and its associated enzymes, inducible NOS (iNOS) and endothelial NOS (eNOS, a constitutive NOS), are associated with LPS-induced renal tolerance against I/R injury, using iNOS (iNOS knock-out) or eNOS (eNOS knock-out) gene-deleted mice. A systemic low dose of LPS pretreatment protected kidney against I/R injury. LPS treatment increased the activity and expression of iNOS, but not eNOS, in kidney tissue. LPS pretreatment in iNOS, but not eNOS, knock-out mice did not protect kidney against I/R injury. In conclusion, the kidney tolerance to I/R injury conferred by pretreatment with LPS is mediated by increased expression and activation of iNOS.

Antiinflammatory and antioxidative effects of Agrimonia pilosa Ledeb

  • Sim, SY;Kim, GJ;Ko, SG
    • Advances in Traditional Medicine
    • /
    • v.7 no.3
    • /
    • pp.217-228
    • /
    • 2007
  • Agrimonia pilosa Ledeb. has long been used for a useful natural agent ameliorating inflammation related symptoms in the folk medicine recipe. This study was performed to investigate effects of Agrimonia pilosa Ledeb.(AP) on the expression of inflammation related genes such as the inducible nitric oxide synthase (iNOS) in macrophage cell line, RAW 264.7 cells. The AP (whole plants) was extracted with 80% ethanol and sequentially partitioned with solvents in order to increase polarity. Among the various solvent extracts of AP, the n-butanol (BuOH) fraction showed the most powerful inhibitory ability against nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 cells without affecting cell viability. Reverse transcriptase-polymerase chain reaction and Western blot analysis revealed that the BuOH fraction provided a primary inhibitor of the iNOS protein and mRNA expression in LPS-induced RAW 264.7 cells. The DPPH and OH radical scavenging activities of the several fractions of 80% ethanol extracts of AP significantly increased by EtOAC and BuOH fractions. Thus, the present study suggests that the response of a component of the BuOH fraction to NO generation via iNOS expression provide an important clue to elucidate anti-inflammatory mechanism of AP.

Effects of Astaxanthin on the Production of NO and the Expression of COX-2 and iNOS in LPS-Stimulated BV2 Microglial Cells

  • Choi, Seok-Keun;Park, Young-Sam;Choi, Dong-Kug;Chang, Hyo-Ihl
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1990-1996
    • /
    • 2008
  • Astaxanthin has shown antioxidant, antitumor, and anti-inflammatory activities; however, its molecular action and mechanism in the nervous system have yet to be elucidated. We examined the in vitro effects of astaxanthin on the production of nitric oxide (NO), as well as the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Astaxanthin inhibited the expression or formation of nitric oxide (NO), iNOS and COX-2 in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Astaxanthin also suppressed the protein levels of iNOS and COX-2 in LPS-stimulated BV2 microglial cells. These results suggest that astaxanthin, probably due to its antioxidant activity, inhibits the production of inflammatory mediators by blocking iNOS and COX-2 activation or by the suppression of iNOS and COX-2 degradation.